Tool 2LS 0.7.2-sv-comp19 CBMC CBMC Path 5.10 () CPAchecker 1.7-svn 29852 DepthK 3.1 DIVINE ESBMC version 6.0.0 64-bit x86_64 linux Map2Check v7.2-Flock : Tue Nov 27 22:00:00 -04 2018 PeSCo 1.7-svn b8d6131600+ Pinaka 0.1 SMACK 1.9.3 symbiotic 6.0.3-77d4af47 ULTIMATE Automizer 0.1.23-635dfa2a ULTIMATE Kojak 0.1.23-635dfa2a ULTIMATE Taipan 0.1.23-635dfa2a VeriFuzz 1.0.0
Limits timelimit: 900 s, memlimit: 15000 MB, CPU core limit: 8
Host apollon*
OS Linux 4.15.0-42-generic
System CPU: Intel Xeon E3-1230 v5 @ 3.40 GHz, cores: 8, frequency: 3.8 GHz, Turbo Boost: disabled; RAM: 33546 MB
Date of execution 2018-12-04 22:44:17 CET 2018-12-04 22:48:40 CET 2018-12-04 22:45:10 CET 2018-12-05 05:46:16 CET 2018-12-05 09:36:33 CET 2018-12-10 10:00:20 CET 2018-12-06 11:06:04 CET 2018-12-06 11:03:31 CET 2018-12-06 12:20:21 CET 2018-12-06 12:44:04 CET 2018-12-06 20:14:43 CET 2018-12-07 19:13:55 CET 2018-12-07 21:42:05 CET 2018-12-08 07:42:40 CET 2018-12-08 11:04:44 CET 2018-12-08 14:19:36 CET 2018-12-09 02:47:33 CET
Run set 2ls.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] cbmc.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] cbmc-path.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] cpa-seq.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] depthk.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] divine-explicit.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] divine-smt.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] esbmc-kind.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] map2check.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] pesco.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] pinaka.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] smack.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] symbiotic.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] uautomizer.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] ukojak.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] utaipan.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other] verifuzz.[sv-comp19_prop-nooverflow.NoOverflows-BitVectors; sv-comp19_prop-nooverflow.NoOverflows-Other]
Options --graphml-witness witness.graphml --graphml-witness witness.graphml --graphml-witness witness.graphml -svcomp19 -heap 10000M -benchmark -timelimit 900s --no-symbolic -s kinduction -svcomp19-pesco -heap 10000M -stack 2048k -benchmark -timelimit 900s --graphml-witness witness.graphml -w error-witness.graphml --witness witness.graphml --full-output --full-output --full-output
../sv-benchmarks/c/ status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J) status cpu (s) mem (MB) energy (J)
signedintegeroverflow-regression/AdditionIntMax_false-no-overflow.c.i .15  25 1.1  .074 9.2 .62 .081 9.2 .43 3.9 280 36 .14 34 1.6 .035 4.6 .20 .054 4.6 .16  .078 26 1.1  900    230 10000   3.9 280 34 .38 61 3.4 2.6 72 26 .21 15 2.3 8.7 370 70 8.0 340 53 8.1 350 62 4.4 170 41
signedintegeroverflow-regression/AdditionIntMin_false-no-overflow.c.i .14  26 1.1  .062 9.3 .57 .095 10   .51 4.3 280 38 .14 34 1.5 .028 4.6 .25 .051 4.6 .14  .090 26 .99 .39 83 4.3 4.2 280 37 .39 61 3.5 2.7 75 33 .19 16 1.9 9.2 380 62 8.8 360 69 7.6 350 69 4.3 170 50
signedintegeroverflow-regression/Division_false-no-overflow.c.i .11  25 1.1  .12  9.4 .42 .061 9.3 .79 4.2 290 37 .16 33 1.6 .046 4.6 .17 .044 4.6 .13  .083 26 1.0  .82 83 10   4.3 280 38 .38 61 3.7 2.7 75 33 .21 16 2.3 8.4 360 65 7.9 350 61 8.9 360 64 4.5 170 42
signedintegeroverflow-regression/Multiplication_false-no-overflow.c.i .11  25 .95 .059 9.7 .60 .062 8.9 .60 3.8 280 34 .15 34 1.9 .031 4.6 .30 .029 4.6 .22  .077 26 .92 900    230 9700   3.7 280 36 .40 61 4.4 2.6 72 29 .19 16 2.6 7.7 340 59 7.7 340 68 8.4 350 71 4.4 160 45
signedintegeroverflow-regression/NoConversion_false-no-overflow.c.i .12  25 .96 .061 9.7 .55 .076 8.9 .56 4.0 280 37 .14 34 1.5 .044 4.6 .16 .031 4.6 .18  .095 26 .72 900    250 10000   3.9 280 34 .38 61 3.1 2.6 72 31 .19 16 2.1 7.9 340 64 7.5 330 55 7.6 350 70 4.5 170 45
signedintegeroverflow-regression/PostfixDecrement_false-no-overflow.c.i .12  25 1.1  .068 9.8 .55 .063 9.1 .60 4.0 280 37 .14 34 1.7 .033 4.6 .27 .029 4.6 .20  .084 26 .89 .40 83 5.2 4.2 290 36 .38 61 4.1 2.7 73 32 .19 16 2.1 8.9 370 68 8.5 370 69 9.2 370 70 4.7 170 50
signedintegeroverflow-regression/PostfixIncrement_false-no-overflow.c.i .11  26 .99 .071 9.7 .53 .065 9.1 .55 4.0 280 35 .14 34 1.5 .031 4.6 .14 .030 4.7 .20  .080 26 .89 .40 83 4.5 4.0 280 38 .39 61 4.2 2.6 72 31 .20 16 2.3 8.9 370 62 8.1 360 61 8.0 380 72 4.5 160 44
signedintegeroverflow-regression/PrefixDecrement_false-no-overflow.c.i .12  25 1.0  .062 9.8 .69 .064 8.7 .50 4.0 280 38 .14 34 1.9 .024 4.7 .18 .033 4.6 .29  .077 26 .87 .41 82 4.8 4.2 280 39 .39 61 3.5 2.7 73 30 .18 17 2.0 9.0 380 65 8.6 370 64 8.7 370 70 4.6 170 44
signedintegeroverflow-regression/PrefixIncrement_false-no-overflow.c.i .12  26 .87 .15  7.6 .33 .13  8.8 .41 3.9 280 35 .16 34 1.9 .046 4.6 .20 .041 4.6 .14  .090 26 1.4  .40 83 5.0 4.0 280 34 .37 61 4.3 2.6 72 35 .21 17 2.1 8.9 370 63 7.8 350 65 8.7 370 70 4.3 170 41
signedintegeroverflow-regression/UnaryMinus_false-no-overflow.c.i .14  25 1.7  .064 9.6 .51 .058 9.4 .58 4.3 280 36 .14 34 1.5 .032 4.6 .21 .034 4.6 .17  .10  26 .82 .41 83 4.6 4.2 280 38 .39 61 3.7 2.7 73 32 .18 15 2.5 9.2 380 78 8.3 360 64 8.0 360 60 900   170 14000
signedintegeroverflow-regression/ConversionToSignedInt_true-no-overflow_true-termination.c.i .10  26 1.1  .078 6.4 .32 .045 7.3 .33 3.5 270 34 .79 67 8.5 .034 4.6 .26 .033 4.7 .25  .085 26 .87 900    240 9800   3.6 280 35 .39 61 3.4 2.0 67 24 .14 15 1.7 7.1 330 60 8.6 360 63 8.3 370 65 900   170 11000
signedintegeroverflow-regression/IntegerPromotion_true-no-overflow_true-termination.c.i .099 25 .85 .069 5.9 .30 .087 6.4 .37 3.7 280 35 .81 67 8.7 .037 4.5 .14 .055 4.6 .15  .084 26 .95 900    230 9900   3.9 280 32 .38 61 3.7 2.0 67 23 .17 16 2.1 8.7 380 71 8.9 350 62 8.8 360 70 900   170 11000
signedintegeroverflow-regression/Multiplication_true-no-overflow_true-termination.c.i .10  25 .83 .052 6.5 .38 .095 7.0 .32 3.7 280 34 .80 66 8.8 .033 4.6 .19 .039 4.8 .22  .081 26 .84 900    240 9500   3.7 280 32 .38 61 4.1 2.0 68 25 .15 16 2.0 8.8 370 64 8.5 370 63 8.5 350 63 900   160 11000
signedintegeroverflow-regression/NoNegativeIntegerConstant_true-no-overflow_true-termination.c.i .096 25 1.0  .048 7.4 .47 .051 7.3 .37 3.4 270 35 .80 66 9.3 .029 4.6 .21 .032 4.6 .27  .082 26 1.2  900    250 9900   3.4 270 33 .38 61 3.6 2.0 67 24 .16 16 1.9 8.3 350 62 8.3 370 62 8.3 360 63 900   170 12000
signedintegeroverflow-regression/UsualArithmeticConversions_true-no-overflow_true-termination.c.i .10  25 .92 .059 6.4 .40 .054 7.1 .34 3.6 280 34 .81 65 9.7 .047 4.6 .18 .032 4.6 .20  .084 26 .83 900    230 10000   3.8 280 36 .40 61 3.0 2.1 68 26 .15 16 2.4 8.7 370 64 9.2 360 63 7.9 350 60 900   170 13000
termination-crafted/2Nested_false-no-overflow.c .12  24 .93 .077 9.2 .44 .12  7.4 .37 3.0 270 28 .14 34 1.5 .029 4.6 .21 .027 4.7 .26  .083 26 1.2  .40 83 4.4 3.1 270 29 .38 59 3.2 3.1 110 40 .23 18 2.7 7.7 360 61 7.9 370 55 7.8 360 65 3.5 150 38
termination-crafted/4NestedWith3Variables_false-no-overflow.c .16  24 1.0  .091 9.2 .80 .087 9.0 .70 3.1 260 31 .21 33 2.0 .052 4.6 .25 .028 4.6 .17  .14  26 1.6  .43 83 4.6 3.0 270 30 .35 58 4.4 3.4 85 44 .26 18 2.3 7.8 370 64 7.0 340 61 7.6 370 62 3.5 150 40
termination-crafted/Ackermann_false-no-overflow.c .095 24 .86 .095 9.9 .91 .058 9.4 .58 900   3400 9800 .13 33 1.8 .030 4.6 .19 .032 4.7 .27  .080 26 1.1  44    130 550   900   3600 10000 .38 59 3.4 2.7 76 40 .28 18 3.3 7.2 360 56 7.0 330 53 6.4 330 51 900   150 11000
termination-crafted/Bangalore_false-no-overflow.c .12  24 1.0  .067 9.8 .48 .067 9.2 .54 3.2 270 28 .13 33 1.7 .030 4.6 .17 .031 4.6 .20  .10  26 .76 900    74 9600   3.0 270 31 .35 59 3.1 880   1100 10000 .24 18 3.3 7.6 360 65 7.5 350 67 7.6 360 68 12   150 140
termination-crafted/Bangalore_v3_false-no-overflow.c .15  23 .93 .083 9.4 .42 .063 9.8 .48 3.0 270 25 .14 33 1.4 .029 4.6 .21 .029 4.6 .23  .078 26 .92 900    75 10000   3.2 260 33 .40 59 3.3 3.1 77 47 .24 18 3.3 7.3 340 55 7.3 350 55 7.7 360 56 8.6 150 100
termination-crafted/Benghazi_nondet_false-no-overflow.c .12  24 1.0  .080 9.4 .56 .062 10   .62 2.9 270 27 .14 34 1.6 .037 4.6 .19 .029 4.7 .21  .085 26 .80 900    80 12000   3.1 270 30 .37 59 3.2 3.1 84 44 .26 17 2.7 7.8 370 61 8.2 370 67 7.5 340 58 3.6 150 41
termination-crafted/Binary_Search_false-no-overflow.c .090 24 .76 .10  9.4 .97 .068 9.1 .60 2.9 270 31 .17 34 1.7 .037 4.7 .26 .054 4.6 .14  .11  26 1.3  570    130 6700   3.1 270 31 .36 59 3.7 2.7 74 39 .24 19 2.8 7.5 370 60 7.9 360 69 8.0 370 63 3.5 150 35
termination-crafted/Cairo_nondet_false-no-overflow.c .14  24 1.1  .12  8.4 .28 .068 9.4 .43 3.2 270 29 .38 35 4.0 .028 4.7 .20 .030 4.6 .19  .090 26 .97 210    100 2400   3.2 270 28 .35 59 3.1 3.1 79 43 .25 18 2.6 7.7 350 58 8.6 370 64 7.8 370 58 95   150 1100
termination-crafted/Cairo_step2_false-no-overflow.c 900     1300 11000    880     4500   4100    880     110   11000    910   2500 11000 41    40 520   .028 4.7 .26 .029 4.6 .21  900     480 12000    180    77 2100   910   2600 12000 900    410 4100   880   600 11000 900    260 11000   900   1200 14000 900   3800 10000 900   1100 12000 900   150 10000
termination-crafted/Collatz_unknown-termination_false-no-overflow.c .12  24 .99 .086 9.4 .73 .075 9.5 .44 3.3 280 30 .16 33 2.5 .059 4.6 .17 .026 4.6 .18  .11  26 1.1  .40 79 6.0 3.3 280 34 .43 60 3.5 3.1 80 41 .24 18 2.8 7.3 330 65 7.0 340 61 8.8 370 67 3.6 150 35
termination-crafted/Copenhagen_disj_false-no-overflow.c .16  24 1.0  .078 8.9 .49 .063 9.6 .54 3.0 270 31 .13 33 1.5 .036 4.7 .13 .030 4.6 .20  .081 26 .80 900    74 11000   3.0 270 27 .35 59 3.7 3.1 82 43 .22 17 2.8 7.2 340 56 7.5 350 64 7.9 370 68 10   150 120
termination-crafted/Gothenburg_false-no-overflow.c .13  24 1.3  .071 9.4 .61 .12  9.1 .40 3.0 270 27 .18 34 2.1 .057 4.6 .14 .027 4.6 .21  .13  26 1.3  820    78 12000   3.1 270 30 .37 59 4.0 3.2 82 41 .24 18 2.9 7.8 350 58 7.8 350 62 7.7 360 64 3.5 150 36
termination-crafted/Gothenburg_v2_false-no-overflow.c .12  24 1.1  .081 9.6 .69 .057 9.6 .59 3.0 270 30 .20 33 3.1 .030 4.6 .18 .051 4.5 .24  .13  26 2.2  210    83 3300   3.1 270 25 .40 59 3.2 3.2 81 36 .24 17 2.0 7.4 350 61 7.4 350 56 7.6 350 59 5.0 150 52
termination-crafted/Hanoi_2vars_false-no-overflow.c .12  24 .89 .057 9.5 .46 .068 9.2 .45 3.0 270 26 .14 33 1.7 .027 4.6 .18 .031 4.6 .26  .086 26 .74 .39 83 5.2 3.0 270 31 .37 59 3.2 3.1 110 39 .23 18 2.8 7.4 360 58 7.7 360 58 7.6 370 60 3.3 150 33
termination-crafted/Hanoi_3vars_false-no-overflow.c .11  24 1.3  .074 9.9 .65 .077 9.8 .42 3.0 270 32 .15 34 1.9 .056 4.7 .16 .030 4.6 .16  .092 26 1.0  .40 83 5.0 3.1 270 30 .36 59 3.4 3.1 84 38 .24 19 2.8 7.2 340 63 7.2 330 52 8.0 370 64 3.4 150 34
termination-crafted/Hanoi_plus_false-no-overflow.c .11  24 .99 .071 9.6 .62 .066 8.9 .54 3.1 270 27 .19 33 2.1 .028 4.6 .23 .030 4.6 .18  .11  26 1.2  .39 82 4.6 3.0 270 29 .35 59 4.3 3.1 84 40 .23 18 2.8 7.1 340 55 6.7 320 58 7.9 370 65 3.2 150 35
termination-crafted/Lobnya-Boolean-Reordered_false-no-overflow.c .12  24 1.0  .074 9.3 .47 .092 9.2 .36 3.0 280 31 .14 34 1.5 .053 4.6 .16 .046 4.6 .17  .087 26 1.0  140    4500 1500   3.0 270 28 .38 59 3.0 3.1 78 45 .22 19 2.7 8.2 370 67 7.9 370 61 8.4 380 68 92   150 1200
termination-crafted/Mysore_false-no-overflow.c .11  24 1.1  .071 11   .50 .13  8.9 .34 3.0 270 26 .16 33 1.8 .037 4.8 .20 .049 4.6 .13  .10  26 1.1  900    83 11000   3.1 270 29 .36 59 3.7 3.1 83 38 .23 18 2.8 7.6 370 66 7.8 370 56 7.9 370 65 3.7 160 37
termination-crafted/NestedRecursion_1a_false-no-overflow.c .092 24 .88 .084 9.7 .84 .11  8.7 .47 3.1 270 25 .14 33 1.8 .037 4.6 .20 .027 4.8 .16  .080 26 .86 13    91 160   3.0 270 27 .35 59 4.0 2.7 75 33 .24 18 3.3 8.3 360 64 8.3 350 67 7.3 340 55 7.6 200 80
termination-crafted/NestedRecursion_2a_false-no-overflow.c .085 23 .76 .065 9.9 .59 .066 10   .51 3.1 280 31 .13 34 1.6 .036 4.6 .14 .028 4.6 .17  .090 26 .81 6.8  91 84   3.2 280 29 .37 59 4.1 2.6 73 33 .24 18 2.5 7.8 360 62 8.2 360 62 8.3 360 69 3.6 150 33
termination-crafted/NonTermination1_false-no-overflow.c .11  24 1.2  .066 9.4 .70 .079 9.2 .34 3.3 280 34 .14 34 1.6 .043 4.6 .14 .032 4.6 .21  .10  26 .74 .42 82 4.5 3.3 280 31 .36 58 3.6 4.4 80 50 .22 19 2.6 6.4 340 57 8.2 360 59 6.7 350 51 3.3 150 33
termination-crafted/NonTermination2_false-no-overflow.c .12  24 .98 .089 9.3 .51 .070 9.6 .46 3.3 280 31 .13 33 1.5 .031 4.7 .24 .056 4.6 .25  .084 26 .73 .42 78 4.8 3.3 280 33 .40 59 3.1 3.1 80 37 .23 18 2.7 7.9 360 67 8.2 370 71 8.0 350 65 3.5 150 32
termination-crafted/NonTermination4_false-no-overflow.c .43  30 5.1  .14  9.9 1.7  .15  9.7 1.2  200   1300 1500 15    55 210   .047 4.8 .26 .055 4.7 .17  .11  26 1.3  .40 82 5.0 210   1200 1500 .39 59 3.9 140   450 1200 .18 16 2.0 27   800 270 590   3400 4800 59   1500 650 3.3 150 34
termination-crafted/NonTerminationSimple2_false-no-overflow.c .12  24 .99 .075 9.0 .55 .070 8.5 .39 3.1 270 30 .14 34 1.4 .035 4.6 .27 .030 4.6 .31  .084 26 .75 170    78 2000   3.0 270 31 .37 59 3.1 880   1900 10000 .22 17 2.5 7.6 350 57 7.5 360 56 7.9 360 65 51   150 610
termination-crafted/NonTerminationSimple3_false-no-overflow.c .11  24 1.1  .091 8.4 .33 .067 8.9 .48 3.1 270 28 .14 33 1.5 .057 4.6 .18 .045 4.6 .17  .077 26 .95 900    75 8900   3.0 270 31 .35 59 4.1 3.0 77 39 .27 20 2.5 8.6 370 64 8.1 360 57 7.7 370 64 12   150 140
termination-crafted/NonTerminationSimple4_false-no-overflow.c 900     1200 11000    880     4400   4400    880     100   9500    900   2000 12000 34    40 490   .028 4.7 .16 .035 4.6 .24  900     480 11000    220    77 2600   900   2000 12000 900    400 3800   880   700 12000 .21 18 3.0 900   1200 13000 900   5200 12000 900   1100 12000 900   150 13000
termination-crafted/NonTerminationSimple5_false-no-overflow.c .11  24 1.2  .089 9.1 .39 860     15000   11000    3.1 270 27 .14 34 1.5 .030 4.6 .17 .028 4.6 .15  .081 26 .92 120    4000 1400   3.1 270 32 900    360 4600   3.1 83 40 .27 18 2.8 7.1 340 56 7.8 360 55 7.9 350 61 900   150 12000
termination-crafted/NonTerminationSimple6_false-no-overflow.c .11  24 1.1  .076 10   .41 .061 9.3 .58 3.2 270 30 .13 34 1.6 .047 4.6 .17 .032 4.6 .21  .082 26 .95 35    78 400   3.1 270 32 .37 58 2.7 880   1400 9000 .23 17 4.6 6.4 330 54 7.8 360 62 6.9 350 52 6.6 150 72
termination-crafted/NonTerminationSimple8_false-no-overflow.c .13  24 .88 .077 9.6 .51 .058 9.2 .55 3.0 260 25 .14 34 1.6 .045 4.6 .21 .033 4.6 .17  .099 26 .83 110    4400 1300   3.1 270 31 .34 59 3.1 3.2 86 47 .26 17 2.8 8.1 360 62 7.1 340 51 8.0 370 63 900   150 12000
termination-crafted/NonTerminationSimple9_false-no-overflow.c .11  23 1.2  .072 9.4 .43 .12  8.3 .30 3.1 270 27 .14 33 1.4 .053 4.7 .18 .034 4.7 .11  .083 26 .85 900    4000 11000   3.1 270 27 .37 59 3.0 3.1 77 36 .22 18 3.2 7.6 360 63 6.5 330 57 7.8 360 65 3.9 150 37
termination-crafted/Pure2Phase_false-no-overflow.c .12  24 .94 .077 9.7 .47 .068 9.3 .49 3.1 270 29 .15 33 2.3 .028 4.6 .18 .030 4.6 .18  .10  26 .79 140    4500 1500   2.9 270 27 .36 59 3.4 3.1 82 37 .24 23 2.7 7.9 370 65 6.9 340 53 8.0 360 57 8.8 150 94
termination-crafted/Pure3Phase_false-no-overflow.c .11  24 1.8  .073 9.5 .58 .12  8.6 .33 3.2 270 32 .16 33 1.9 .045 4.6 .18 .061 4.7 .21  .10  26 1.3  .41 83 5.2 3.1 270 30 .36 59 3.3 3.2 83 36 .24 17 2.7 7.2 340 60 7.4 350 64 6.6 330 52 3.6 150 34
termination-crafted/RecursiveMultiplication_false-no-overflow.c .12  24 .71 .078 9.5 .65 .13  8.1 .31 3.5 290 38 .16 33 1.5 .055 4.6 .12 .032 4.6 .21  .11  26 .74 46    300 550   3.6 290 33 .37 59 2.9 2.7 77 40 .27 18 3.0 6.7 330 52 7.0 350 58 7.5 360 68 4.3 200 40
termination-crafted/RecursiveNonterminating_false-no-overflow.c .080 24 .93 .095 9.0 .52 .065 9.4 .43 3.0 270 28 .14 33 1.6 .033 4.6 .17 .028 4.6 .24  .089 26 .79 88    91 1000   3.8 270 52 .36 59 3.3 2.7 72 33 .28 22 2.3 7.2 330 63 7.8 360 60 8.2 370 60 13   150 150
termination-crafted/Rotation180_false-no-overflow.c .12  24 .94 .072 8.7 .33 .080 9.5 .46 2.9 270 26 .14 34 1.5 .032 4.8 .12 .032 4.7 .18  .078 26 .89 900    74 10000   3.1 270 27 .36 59 3.1 3.1 76 39 .23 17 2.7 8.0 370 63 7.2 340 66 7.7 360 56 51   150 440
termination-crafted/Singapore_false-no-overflow.c .12  24 1.1  .066 9.5 .51 .068 9.0 .35 3.1 270 27 .15 33 2.1 .046 4.6 .14 .054 4.6 .21  .10  26 1.1  .41 83 4.7 3.0 270 28 .40 59 3.2 3.1 83 40 .25 18 2.7 8.0 370 58 7.1 340 54 7.7 360 58 3.7 150 36
termination-crafted/Singapore_plus_false-no-overflow.c .15  24 .97 .11  9.2 .49 .074 8.8 .71 2.8 270 27 .15 34 1.6 .026 4.6 .21 .034 4.6 .25  .092 26 1.1  .41 83 4.6 3.0 270 30 .37 59 3.8 12   120 160 .22 18 2.8 7.8 360 63 8.0 370 65 7.8 360 59 3.4 150 34
termination-crafted/Singapore_v1_false-no-overflow.c .12  24 1.3  .076 10   .50 .070 8.8 .43 3.0 270 28 .16 33 1.7 .048 4.6 .17 .033 4.6 .15  .10  26 1.3  .41 83 5.7 2.9 270 29 .38 58 3.3 880   440 11000 .22 18 2.4 7.2 350 59 7.4 350 61 6.8 330 62 3.4 150 33
termination-crafted/Singapore_v2_false-no-overflow.c .12  24 .93 .10  9.7 .38 .16  8.6 .30 2.9 260 27 .15 34 2.0 .036 4.6 .23 .051 4.6 .20  .10  26 1.3  .40 79 5.1 3.0 270 25 .37 59 2.7 11   110 140 .22 19 2.5 7.9 370 63 8.1 360 62 7.6 370 61 3.4 200 35
termination-crafted/Stockholm_false-no-overflow.c .12  24 1.2  .078 9.3 .50 .094 9.1 .54 3.1 270 31 .20 34 2.0 .048 4.6 .21 .031 4.6 .16  .13  26 1.0  900    78 11000   3.1 270 32 .35 59 3.2 3.1 85 43 .23 18 2.7 7.8 370 61 8.2 370 55 7.3 340 51 220   200 3000
termination-crafted/Thun_false-no-overflow.c .12  24 .96 .078 10   .46 .067 9.0 .70 3.1 270 26 .14 33 2.0 .031 4.6 .17 .029 4.6 .18  .098 26 .84 .39 83 5.1 3.0 270 26 .35 58 3.5 3.2 84 38 .23 18 2.7 7.8 370 61 7.5 340 61 7.5 360 61 3.6 150 40
termination-crafted/Toulouse-BranchesToLoop_false-no-overflow.c .15  24 1.0  .075 9.5 .52 .065 9.1 .61 3.0 270 28 .14 34 1.5 .030 4.6 .20 .031 4.6 .21  .083 26 .88 77    82 1200   3.1 270 26 .36 59 3.7 3.1 84 40 .24 18 2.9 7.4 340 50 7.9 370 67 7.4 350 55 6.3 150 77
termination-crafted/Toulouse-MultiBranchesToLoop_false-no-overflow.c .14  24 1.0  .14  10   .63 .082 8.8 .51 3.5 280 35 .15 33 1.7 .036 4.6 .25 .029 4.6 .29  .11  26 1.0  5.8  83 79   3.6 280 35 .36 59 3.9 3.5 91 39 .26 18 3.4 16   540 140 15   520 140 17   520 150 4.0 160 41
termination-crafted/aaron2_false-no-overflow.c .13  24 .85 .086 9.3 .45 .075 8.8 .49 3.0 270 26 .17 34 2.1 .049 4.6 .13 .031 4.6 .20  .14  26 1.3  900    4300 11000   3.2 270 28 .40 59 3.7 3.2 85 45 .24 18 2.6 7.7 360 53 6.8 340 56 9.1 370 69 200   150 2300
termination-crafted/aaron3_false-no-overflow.c .12  24 1.3  .071 9.4 .51 .072 8.9 .42 2.9 270 27 .14 33 1.7 .031 4.6 .13 .029 4.7 .21  .12  26 .96 780    5300 10000   3.0 270 32 .39 59 3.1 3.2 86 40 .24 18 3.3 7.7 370 65 7.1 340 61 8.0 370 69 3.7 200 36
termination-crafted/easy2_false-no-overflow.c 900     1600 10000    880     2200   4800    880     160   11000    910   13000 11000 58    48 760   .032 4.5 .27 .049 4.6 .13  900     1100 11000    900    75 9400   910   13000 11000 900    410 4000   880   710 9000 900    410 7800   900   2600 11000 900   5700 7700 900   1600 13000 900   150 10000
termination-crafted/4BitCounterPointer_true-no-overflow_true-termination_true-valid-memsafety.c .18  25 1.6  .13  8.2 1.5  .18  7.4 1.5  3.0 270 27 .78 65 8.1 .055 4.6 .15 .054 4.7 .16  .088 26 1.0  900    84 10000   3.0 270 30 .77 60 6.4 2.4 75 31 .13 16 1.6 7.4 350 59 7.1 340 61 7.6 370 66 890   1600 11000
termination-crafted/Arrays01-EquivalentConstantIndices_true-no-overflow_true-termination_true-valid-memsafety.c 6.8   200 80    880     2800   4600    880     1300   12000    3.1 270 31 .84 68 8.7 .032 4.6 .19 .032 4.8 .33  900     1800 13000    900    87 10000   3.2 270 27 900    770 6700   880   1700 6000 900    450 7100   28   620 250 900   4600 9500 900   850 13000 900   150 11000
termination-crafted/Arrays02-EquivalentConstantIndices_false-termination_true-valid-memsafety_true-no-overflow.c 3.3   96 43    880     3100   5000    870     780   12000    3.1 270 29 .79 66 7.9 .035 4.8 .25 .028 4.8 .19  900     1600 11000    900    4000 8200   3.1 270 30 900    1400 5300   880   460 11000 900    69 11000   8.0 350 65 8.8 360 66 8.2 370 66 900   150 13000
termination-crafted/Arrays03-ValueRestictsIndex_true-no-overflow_true-termination_true-valid-memsafety.c 3.7   170 42    880     4600   4200    880     920   9600    910   6800 11000 .81 66 9.6 .029 4.6 .25 .036 4.6 .23  900     1200 11000    900    4800 10000   910   6800 10000 900    920 5200   880   1800 5500 900    200 12000   9.8 390 70 900   5500 10000 11   430 92 900   150 13000
termination-crafted/Bangalore_true-no-overflow_true-termination_true-valid-memsafety.c .10  24 .80 880     4300   5000    880     200   12000    3.0 270 25 .81 65 8.5 .028 4.7 .17 .030 4.6 .20  900     140 11000    900    90 9900   3.0 270 26 900    460 5400   880   550 11000 900    78 12000   9.0 350 64 9.5 430 78 8.9 360 70 900   150 12000
termination-crafted/Bangalore_v2_true-no-overflow_false-termination_true-valid-memsafety.c .093 24 .90 880     4100   4200    880     190   11000    3.0 270 28 .82 67 8.2 .026 4.6 .21 .029 4.7 .21  900     220 11000    900    75 9500   3.1 270 23 900    410 4100   880   470 10000 900    74 12000   9.1 380 65 9.6 410 74 9.1 380 72 900   150 9900
termination-crafted/Bangalore_v4_true-no-overflow_true-termination_true-valid-memsafety.c .17  24 1.8  .061 6.5 .41 .058 6.2 .47 3.1 270 31 .85 66 9.7 .030 4.6 .13 .054 4.5 .17  .12  26 1.3  900    4100 9800   3.1 270 29 .36 59 3.5 2.4 76 35 .21 18 2.8 8.2 360 73 8.6 350 80 8.5 370 61 900   150 11000
termination-crafted/Benghazi_true-no-overflow_true-termination_true-valid-memsafety.c 900     300 9900    880     2500   5100    880     170   11000    900   5000 11000 470    63 6500   .046 4.6 .16 .036 4.7 .21  900     1500 10000    900    190 9000   900   5100 11000 900    390 6500   880   840 9300 900    430 7700   81   620 1000 900   2100 8300 60   810 710 900   150 11000
termination-crafted/Cairo_step2_true-no-overflow_false-termination_true-valid-memsafety.c .093 24 .84 880     6800   6300    880     380   6000    2.9 270 25 .81 66 7.9 .032 4.6 .19 .055 4.5 .20  900     890 13000    900    74 10000   2.9 260 26 900    420 6300   2.4 74 29 .16 17 1.6 6.8 320 55 6.6 320 53 7.4 360 58 900   150 10000
termination-crafted/Cairo_step2_true-no-overflow_true-termination_true-valid-memsafety.c 900     1300 12000    880     4100   4500    880     110   10000    910   2500 12000 43    40 540   .028 4.6 .14 .027 4.6 .19  900     560 10000    900    75 9700   900   2300 11000 900    420 4600   880   390 9600 900    430 11000   8.4 360 70 8.6 370 74 7.7 360 69 900   150 10000
termination-crafted/Cairo_true-no-overflow_true-termination_true-valid-memsafety.c 900     1400 12000    880     4500   4800    880     120   11000    3.0 270 29 42    40 530   .026 4.6 .23 .034 4.7 .27  900     480 11000    900    74 10000   3.0 270 28 900    390 3700   880   730 9600 900    250 13000   8.1 350 59 9.1 370 56 7.5 330 59 900   150 11000
termination-crafted/Copenhagen_true-no-overflow_true-termination_true-valid-memsafety.c .10  24 .78 880     3200   5000    880     220   10000    3.0 270 26 .81 66 9.0 .043 4.6 .17 .032 4.6 .19  900     930 11000    900    75 11000   2.9 270 27 900    440 4600   880   700 9200 900    520 8900   8.6 350 66 9.9 450 93 8.3 350 67 900   150 13000
termination-crafted/Division_true-no-overflow_false-termination_true-valid-memsafety.c .099 24 .99 880     3600   6500    870     350   11000    3.1 280 27 .82 67 8.8 .029 4.6 .20 .027 4.6 .20  900     780 11000    900    74 8800   3.1 280 26 900    1900 6100   880   2200 12000 900    680 10000   7.2 350 56 9.0 380 77 7.2 340 55 51   150 580
termination-crafted/LexIndexValue-Array_true-no-overflow_true-termination_true-valid-memsafety.c 7.2   270 85    52     13000   710    880     13000   11000    3.2 270 31 .82 66 7.9 .031 4.7 .20 .038 4.6 .22  900     15000 11000    900    4300 7800   3.1 270 29 900    14000 9600   880   1700 7300 900    2700 6200   900   990 10000 900   4800 10000 900   1100 11000 900   150 11000
termination-crafted/LexIndexValue-Pointer_true-no-overflow.c .16  24 1.7  55     13000   680    .059 15   .52 910   6800 12000 52    60 770   .034 4.7 .16 .029 4.9 .23  900     5900 13000    900    4400 5600   900   6700 11000 900    14000 9300   880   1700 5600 740    2500 6400   900   1000 13000 900   5500 9800 900   890 14000 4.0 200 39
termination-crafted/Madrid_true-no-overflow_false-termination_true-valid-memsafety.c .12  24 .83 180     15000   2200    140     15000   1800    3.0 270 27 .84 66 8.9 .028 4.6 .22 .025 4.6 .022 900     15000 13000    900    74 7600   2.8 270 25 840    15000 11000   2.3 74 31 .14 15 1.5 7.0 340 57 7.4 350 53 8.0 370 64 51   160 660
termination-crafted/McCarthy91_Iteration_true-no-overflow_true-termination_true-valid-memsafety.c 900     1500 12000    880     1400   7600    870     4100   11000    900   560 12000 510    67 5500   .029 4.7 .19 .030 4.6 .17  900     160 11000    900    75 10000   900   570 14000 43    15000 610   880   370 10000 900    280 12000   900   1900 13000 900   3600 8300 900   1400 12000 900   150 9900
termination-crafted/McCarthy91_Recursion_true-no-overflow_true-termination_true-valid-memsafety.c .12  24 .57 880     1600   3700    870     5900   13000    3.4 280 28 170    15000 2500   .037 4.5 .17 .028 4.6 .17  900     6400 6900    900    320 14000   3.4 280 30 43    15000 660   880   180 9700 900    290 12000   11   380 84 9.7 410 71 9.9 400 73 900   150 12000
termination-crafted/MenloPark_true-no-overflow_true-termination_true-valid-memsafety.c 900     660 7400    880     3100   3100    880     170   11000    3.3 270 34 470    83 5900   .030 4.6 .19 .051 4.6 .18  900     1200 13000    900    76 10000   3.4 280 37 900    390 4800   880   770 9200 900    440 8100   12   550 100 24   640 260 19   510 180 900   150 9600
termination-crafted/MutualRecursion_1a_true-no-overflow_false-termination_true-valid-memsafety.c .088 24 .83 880     220   3700    880     5000   11000    4.6 290 39 180    15000 2500   .026 4.7 .20 .051 4.6 .27  900     12000 7700    900    780 12000   4.5 300 48 40    15000 570   890   240 10000 900    520 12000   12   510 91 900   1000 10000 13   550 110 900   460 10000
termination-crafted/MutualRecursion_1b_true-no-overflow_true-termination_true-valid-memsafety.c .086 24 .79 880     220   2900    880     5000   11000    4.4 300 41 180    15000 2100   .033 4.6 .19 .029 4.6 .23  900     12000 6200    900    280 10000   4.5 300 41 42    15000 620   890   200 11000 900    280 11000   21   730 170 900   1100 11000 20   640 180 900   200 13000
termination-crafted/NestedRecursion_1b_true-no-overflow_true-termination_true-valid-memsafety.c .088 24 .96 880     460   3600    880     500   7200    900   1200 14000 160    15000 2000   .054 4.6 .16 .052 4.6 .19  900     4900 5200    900    420 12000   900   1200 10000 320    15000 3800   880   350 7700 900    620 12000   16   570 120 900   1100 9500 19   660 150 900   200 12000
termination-crafted/NestedRecursion_1c_true-no-overflow_true-termination_true-valid-memsafety.c .085 24 .81 880     320   3500    880     340   5600    3.7 290 34 170    15000 2000   .032 4.6 .19 .026 4.6 .28  900     4800 4700    900    450 9800   3.9 290 41 250    15000 3300   880   540 7400 900    500 7600   13   570 99 900   1200 11000 13   570 110 900   200 13000
termination-crafted/NestedRecursion_1d_true-no-overflow_true-termination_true-valid-memsafety.c .085 24 .71 880     460   4500    880     500   6700    900   1400 10000 160    15000 2100   .031 4.7 .21 .037 4.7 .21  900     4800 8100    900    480 9900   900   1800 11000 320    15000 4100   880   350 8300 900    550 8100   15   550 130 900   1100 10000 16   570 140 900   200 11000
termination-crafted/NestedRecursion_2b_true-no-overflow_false-termination_true-valid-memsafety.c .089 24 .89 870     860   5300    880     690   10000    900   4100 11000 170    15000 2700   .029 4.6 .17 .031 4.6 .19  900     6000 6000    900    2300 8400   900   4000 10000 900    4600 14000   880   240 7800 900    4200 10000   13   490 120 900   1200 12000 13   500 110 900   430 13000
termination-crafted/NestedRecursion_2c_true-no-overflow_true-termination_true-valid-memsafety.c .092 24 .78 880     4200   6800    870     180   11000    910   4400 12000 170    15000 2200   .031 4.7 .19 .027 4.8 .22  900     15000 8700    900    1100 11000   900   4100 11000 290    15000 3600   880   480 7900 900    1000 12000   17   520 160 900   5200 13000 36   750 330 900   150 13000
termination-crafted/NonTermination3_true-no-overflow_false-termination.c .10  24 1.2  880     2300   10000    880     880   6500    3.2 270 29 .79 67 8.4 .034 4.6 .20 .027 4.7 .22  900     2200 13000    900    4500 9100   3.1 270 27 900    880 4400   2.5 80 33 .17 16 1.9 8.1 340 61 8.8 370 72 8.5 360 66 900   150 12000
termination-crafted/NonTerminationSimple7_true-no-overflow_false-termination_true-valid-memsafety.c .098 24 .96 880     4700   4800    880     210   10000    3.0 270 28 1.0  66 11   .045 4.6 .17 .028 4.6 .21  900     190 10000    900    74 9200   3.1 270 26 900    3400 3400   880   3100 9200 900    17 11000   9.1 370 72 8.7 380 80 9.0 370 71 900   150 11000
termination-crafted/Nyala-2lex_true-no-overflow_true-termination_true-valid-memsafety.c .13  24 .76 880     1200   8500    870     8200   13000    3.0 270 29 .79 67 8.7 .036 4.6 .17 .032 4.6 .19  900     470 11000    900    75 9600   3.1 270 27 900    520 5000   880   290 9600 900    3300 11000   8.5 360 70 9.1 380 65 7.9 350 58 900   150 11000
termination-crafted/Parallel_true-no-overflow_true-termination_true-valid-memsafety.c .10  24 .79 880     1200   9700    850     15000   13000    3.0 270 25 .84 66 7.9 .035 4.6 .29 .033 4.6 .16  900     500 11000    900    75 10000   3.0 270 28 900    300 6300   880   580 9600 900    440 7600   8.6 370 66 9.5 400 85 8.2 360 68 900   150 11000
termination-crafted/Piecewise_true-no-overflow_true-termination_true-valid-memsafety.c .14  24 .85 880     1800   9400    520     15000   6900    3.0 270 29 1.3  66 18   .054 4.6 .25 .031 4.6 .22  900     240 12000    900    4500 14000   3.0 270 27 900    210 4500   880   350 10000 900    280 11000   8.1 370 60 8.7 360 74 8.3 370 64 890   150 11000
termination-crafted/SyntaxSupportPointer01_true-no-overflow_true-termination.c .17  25 1.5  880     4500   4000    880     160   9800    3.0 270 29 28    41 360   .028 4.8 .21 .033 4.6 .20  900     870 11000    900    74 9700   3.0 270 28 900    380 4600   880   760 12000 900    450 10000   7.7 360 65 8.2 330 61 8.4 380 67 3.9 200 33
termination-crafted/TelAviv-Amir-Minimum_true-no-overflow_true-termination_true-valid-memsafety.c .099 24 .94 880     2100   7200    450     15000   5900    3.2 270 30 .89 66 9.0 .056 4.5 .16 .032 4.6 .21  900     490 14000    900    5000 10000   3.2 270 31 900    300 7600   880   410 10000 900    530 11000   9.0 360 76 9.7 400 85 8.7 380 67 900   150 12000
termination-crafted/Waldkirch_true-no-overflow_true-termination_true-valid-memsafety.c .095 24 .84 880     4800   4300    880     150   11000    3.0 270 25 .78 67 9.3 .031 4.6 .19 .031 4.6 .19  900     890 11000    900    75 9400   3.1 270 28 900    350 4300   880   640 9300 900    440 7300   7.6 350 69 8.1 370 69 8.0 370 59 900   150 11000
termination-crafted/WhileFalse_true-no-overflow_true-termination_true-valid-memsafety.c .092 23 .78 .056 7.0 .26 .042 6.1 .29 2.9 270 29 .81 68 8.6 .030 4.7 .20 .028 4.6 .25  .082 26 .87 900    84 9800   2.9 270 25 .34 59 3.5 2.0 66 27 .13 15 1.6 7.4 360 60 7.9 360 60 8.2 350 65 900   150 13000
termination-crafted/WhileTrue_true-no-overflow_false-termination_true-valid-memsafety.c .096 24 .81 .053 6.8 .34 .047 6.1 .24 2.8 260 25 .78 66 8.3 .028 4.6 .19 .024 4.6 .19  280     15000 4100    900    75 7000   2.9 270 27 60    15000 870   2.4 74 30 .17 16 1.6 7.7 370 62 7.2 360 56 7.3 340 63 51   150 640
termination-crafted/easy1_true-no-overflow_true-termination_true-valid-memsafety.c .098 24 .88 1.6   50   21    180     15000   2800    3.0 270 29 .83 66 8.9 .027 4.6 .29 .048 4.6 .21  .60  26 9.3  900    2000 9200   3.0 270 33 .38 59 4.5 27   170 340 .19 18 2.5 7.3 340 56 9.1 350 80 8.6 370 59 900   150 11000
termination-crafted/easy2_true-no-overflow_true-termination_true-valid-memsafety.c 900     1700 10000    880     2300   4300    880     170   12000    910   13000 11000 58    49 750   .034 4.6 .19 .026 4.7 .22  900     1100 12000    900    75 11000   910   13000 10000 900    410 4900   880   790 12000 900    410 7900   900   3100 12000 900   5700 7300 900   1800 12000 900   150 13000
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-Fig2a_false-no-overflow.c .12  24 1.1  .077 10   .63 .12  8.0 .33 2.9 270 25 .19 33 1.8 .034 4.8 .27 .032 4.6 .18  .14  26 1.3  380    4400 4300   3.1 270 31 .35 59 4.4 3.3 91 41 .26 18 2.9 8.2 370 69 7.8 340 70 8.3 370 67 110   150 1400
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-Fig2b_false-no-overflow.c .12  24 1.1  .10  9.7 1.1  .067 9.0 .56 3.1 270 28 .22 34 2.8 .056 4.6 .13 .028 4.6 .18  .14  26 1.6  340    4200 3600   3.2 260 32 .40 59 3.0 3.4 98 42 .25 18 2.9 8.4 370 69 8.1 340 63 8.6 360 77 140   150 2100
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-aaron2_false-no-overflow.c .12  24 1.0  .079 9.3 .60 .067 9.2 .38 3.0 270 28 .17 33 2.3 .053 4.6 .14 .033 4.7 .19  .11  26 1.3  900    4200 13000   3.1 270 31 .35 59 4.1 3.2 85 39 .24 18 3.7 7.8 370 60 7.5 360 55 8.2 360 64 200   150 2600
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-aaron3_false-no-overflow.c .12  24 .97 .075 9.6 .51 .066 9.7 .59 3.0 270 27 .15 33 1.9 .046 4.7 .11 .038 4.5 .095 .11  26 1.2  770    4300 10000   2.9 270 25 .37 59 3.5 3.2 82 50 .25 19 2.9 8.2 370 60 7.8 370 64 7.5 370 56 3.4 150 35
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-complex_false-no-overflow.c .13  24 .82 .084 9.1 .79 .072 9.2 .50 3.1 270 31 .16 33 1.8 .031 4.7 .21 .054 4.5 .23  .10  26 1.1  900    82 8900   3.1 270 28 .37 59 3.2 3.4 88 42 .26 18 3.9 9.2 380 70 8.6 370 80 8.8 350 77 290   150 4200
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-counterex1a_false-no-overflow.c .12  24 1.1  .13  9.4 .43 .12  8.5 .37 3.1 270 27 .14 33 1.7 .028 4.6 .27 .035 4.5 .20  .088 26 .95 220    4400 2500   3.2 270 29 .36 59 4.4 3.2 86 44 .27 18 3.1 7.4 340 67 7.6 370 68 7.6 370 65 900   150 12000
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-counterex1b_false-no-overflow.c .12  24 1.1  .081 9.7 .68 310     15000   4600    3.1 270 32 .14 34 1.4 .031 4.6 .21 .029 4.6 .20  .086 26 .85 640    4200 7300   3.2 270 27 900    360 4900   3.3 89 37 .41 18 5.0 8.4 360 71 9.6 380 73 8.1 350 61 900   150 12000
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-easy2_false-no-overflow.c 900     1700 10000    880     2400   4300    880     160   10000    910   13000 12000 58    48 810   .033 4.6 .11 .030 4.8 .23  900     1100 11000    900    74 9300   910   13000 11000 900    420 4500   880   710 10000 900    430 11000   900   2500 12000 900   4400 6000 900   2400 14000 900   150 11000
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-exmini_false-no-overflow.c .11  24 .97 .067 9.9 .70 .12  7.8 .45 3.0 270 32 .14 34 2.0 .054 4.6 .16 .029 4.8 .22  .11  26 .80 900    84 11000   3.2 270 30 .41 59 3.2 3.2 84 36 .24 18 2.5 7.6 360 63 8.9 370 68 7.6 350 65 6.2 150 81
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-ndecr_false-no-overflow.c .12  23 1.0  .062 9.3 .62 .067 9.0 .46 3.0 270 27 .13 33 1.5 .048 4.8 .19 .032 4.6 .21  .10  26 .65 900    75 11000   2.9 270 30 .37 59 3.3 3.0 80 38 .23 18 2.6 8.5 370 71 8.3 370 67 8.1 370 70 54   150 720
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-nestedLoop_false-no-overflow.c 900     2400 6000    880     1500   5900    210     15000   3400    910   6600 10000 900    710 11000   .030 4.6 .19 .046 4.7 .22  900     1100 10000    900    74 8400   910   6600 13000 900    410 3700   880   440 9000 900    1200 12000   900   1300 12000 900   1800 6800 900   1300 12000 900   150 11000
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-random1d_false-no-overflow.c 900     960 11000    880     1300   9300    330     15000   4200    910   620 12000 720    75 10000   .043 4.6 .19 .027 4.6 .24  900     130 13000    900    4200 7700   910   500 12000 900    540 8000   880   180 11000 900    3100 9100   900   8200 11000 900   3300 5900 900   7500 9300 900   150 12000
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-rsd_false-no-overflow.c .12  24 1.6  .069 9.8 .61 .061 9.3 .42 3.3 280 32 .14 33 1.7 .030 4.6 .19 .027 4.6 .27  .088 26 .91 110    5000 1300   3.3 280 28 .37 59 3.0 3.1 80 41 .22 19 2.5 8.1 370 65 8.1 360 60 7.2 340 54 13   150 170
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-speedFails4_false-no-overflow.c .12  24 .97 .071 9.6 .63 .068 8.9 .52 3.1 270 32 .15 34 1.8 .034 4.6 .22 .046 4.6 .17  .11  26 1.5  900    83 9700   3.2 270 31 .38 59 3.5 3.1 83 38 .27 18 2.8 7.5 360 61 7.7 360 61 8.1 360 59 900   150 12000
termination-crafted-lit/AliasDarteFeautrierGonnord-SAS2010-terminate_false-no-overflow.c .11  24 1.0  .14  8.9 .48 .071 10   .47 3.1 270 26 .15 33 1.5 .033 4.6 .23 .030 4.6 .26  .11  26 .87 900    83 10000   3.1 270 31 .38 59 3.6 3.1 84 37 .23 17 3.4 8.2 360 61 8.7 350 65 7.9 340 58 8.7 150 110
termination-crafted-lit/Ben-Amram-LMCS2010-Ex2.3_false-no-overflow.c .13  24 .99 .071 9.6 .64 880     8100   12000    3.0 270 33 .13 34 1.7 .037 4.6 .15 .033 4.6 .24  .083 26 .96 340    4100 3700   3.1 270 30 .37 58 3.7 3.2 87 40 .27 19 2.8 7.7 340 59 7.6 340 59 7.7 350 60 3.5 200 36
termination-crafted-lit/BradleyMannaSipma-ICALP2005-Fig1_false-no-overflow.c .15  24 1.2  .079 9.5 .73 .070 9.0 .44 3.1 270 28 .16 34 1.9 .055 4.6 .18 .054 4.6 .16  .12  26 .97 570    190 8500   3.0 270 29 .37 59 3.2 3.2 90 39 .23 18 3.1 8.2 380 58 7.9 370 69 8.8 370 67 3.8 150 37
termination-crafted-lit/ChawdharyCookGulwaniSagivYang-ESOP2008-aaron12_false-no-overflow.c .14  24 1.4  .16  15   1.1  .071 9.1 .46 3.1 280 26 .32 35 4.3 .053 4.6 .14 .050 4.6 .16  .25  27 2.9  .40 83 4.9 3.0 270 27 .38 59 3.2 3.5 90 43 .26 18 2.9 6.8 360 60 7.6 360 59 7.4 370 61 3.7 150 36
termination-crafted-lit/ChawdharyCookGulwaniSagivYang-ESOP2008-aaron1_false-no-overflow.c .13  24 1.0  .091 9.4 .48 .10  8.6 .41 3.1 270 26 .16 34 1.9 .029 4.6 .18 .031 4.6 .20  .11  26 1.1  570    4200 8600   3.1 270 30 .39 59 3.6 3.3 87 42 .24 18 2.7 8.0 360 58 7.4 350 58 7.6 330 64 900   150 13000
termination-crafted-lit/ChawdharyCookGulwaniSagivYang-ESOP2008-aaron2_false-no-overflow.c .16  24 1.1  .098 9.7 .41 .076 9.1 .48 2.9 270 27 .17 33 1.9 .029 4.6 .24 .028 4.5 .19  .11  26 1.2  900    3900 14000   3.0 270 27 .38 59 3.8 3.2 85 38 .23 18 2.8 7.6 350 65 7.7 350 60 8.4 370 66 200   200 2900
termination-crafted-lit/ChawdharyCookGulwaniSagivYang-ESOP2008-aaron3_false-no-overflow.c .12  24 .97 .080 9.5 .48 .055 9.4 .42 3.0 270 31 .15 34 1.9 .028 4.6 .20 .028 4.6 .16  .10  26 1.1  770    4100 11000   2.9 270 26 .36 59 3.4 3.2 86 39 .26 18 3.0 7.1 340 53 7.0 340 64 6.8 330 53 3.5 150 39
termination-crafted-lit/ChawdharyCookGulwaniSagivYang-ESOP2008-aaron4_false-no-overflow.c .12  24 1.0  .11  9.7 .66 .093 9.4 .36 3.1 270 27 .19 34 1.9 .056 4.7 .15 .030 4.7 .20  .11  26 1.0  190    79 2700   3.1 270 29 .36 59 3.9 3.3 86 45 .27 18 3.6 8.3 380 61 8.2 380 73 7.3 340 55 8.7 200 100
termination-crafted-lit/ChawdharyCookGulwaniSagivYang-ESOP2008-aaron6_false-no-overflow.c .17  24 .91 .14  9.3 .56 .065 9.4 .67 3.0 260 33 .16 34 2.1 .029 4.6 .13 .028 4.6 .15  .11  26 1.2  .41 82 4.5 3.1 270 26 .37 59 3.0 3.3 91 37 .24 18 3.4 7.2 350 56 6.9 330 54 7.2 340 53 3.7 150 41
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex1.01_false-no-overflow.c .12  24 .88 .13  8.7 .43 .068 8.9 .47 3.1 270 33 .14 33 1.5 .031 4.6 .16 .036 4.6 .24  .080 26 .93 .43 80 5.2 3.1 270 26 .36 59 3.9 3.1 82 37 .23 18 3.0 8.2 370 57 8.3 370 60 8.2 370 63 3.5 150 39
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex1.02_false-no-overflow.c .13  23 1.0  .15  8.6 .39 .069 8.9 .43 3.0 270 26 .15 33 2.2 .031 4.8 .18 .035 4.6 .19  .085 26 .96 72    88 980   3.1 270 25 .38 59 3.0 3.1 83 38 .23 17 2.9 7.6 360 57 8.0 350 68 8.2 360 57 3.5 150 43
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex1.03_false-no-overflow.c .12  24 1.2  .082 9.4 .54 .071 9.2 .44 3.2 280 33 .13 33 1.6 .057 4.6 .11 .047 4.6 .16  .11  26 .83 15    81 210   3.1 290 29 .36 59 3.7 3.1 83 39 .23 17 2.7 8.4 370 69 7.4 350 61 8.2 360 59 3.4 150 41
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex1.04_false-no-overflow.c .12  24 .93 .080 9.7 .46 .075 9.6 .43 3.4 280 29 .14 33 1.3 .029 4.6 .12 .030 4.6 .18  .079 26 .83 .41 83 4.3 3.3 280 31 .37 59 3.1 3.1 79 37 .22 18 2.5 8.1 370 55 7.5 360 64 6.6 320 56 3.6 150 35
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex1.05_false-no-overflow.c .13  24 .97 .096 8.6 .38 .067 9.2 .46 3.3 280 30 .13 34 1.7 .030 4.6 .14 .027 4.6 .23  .080 26 .85 .42 84 4.4 3.2 280 30 .37 59 3.1 3.0 79 51 .22 18 2.5 8.0 370 56 7.4 350 61 7.7 360 58 3.5 150 36
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.01_false-no-overflow.c .12  24 1.0  .064 9.5 .71 .085 8.9 .40 3.0 270 26 .14 33 1.6 .044 4.6 .24 .029 4.6 .24  .082 26 .94 .39 83 4.8 3.1 270 29 .35 59 3.3 3.1 110 43 .23 18 2.6 7.5 350 64 6.7 330 56 7.4 360 61 3.5 150 33
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.02_false-no-overflow.c .12  24 1.0  .072 10   .51 .15  7.8 .35 3.0 270 28 .14 33 1.7 .026 4.6 .21 .029 4.7 .17  .078 26 .94 .41 79 5.6 2.9 280 28 .37 59 3.1 3.1 110 36 .24 23 3.0 8.1 380 67 7.4 330 56 7.3 340 58 3.5 150 41
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.03_false-no-overflow.c .12  24 1.0  .068 9.1 .57 .077 8.3 .48 3.0 270 26 .14 33 1.8 .030 4.6 .18 .048 4.7 .23  .089 26 .87 .39 79 5.2 3.0 270 31 .36 59 3.5 3.1 83 41 .23 18 3.2 8.1 360 60 7.6 350 49 7.9 370 57 6.3 150 82
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.04_false-no-overflow.c .13  24 1.2  .064 9.3 .56 .070 9.2 .51 3.1 270 29 .14 33 2.0 .050 4.6 .27 .026 4.6 .28  .099 26 1.1  900    160 13000   2.9 270 27 .36 58 3.6 3.2 82 44 .23 18 3.0 7.4 350 57 7.8 360 61 7.6 360 59 9.5 150 100
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.05_false-no-overflow.c .13  23 .80 .071 9.3 .50 .064 8.6 .53 3.0 270 32 .13 33 1.8 .057 4.7 .17 .028 4.6 .24  .095 26 .94 900    84 12000   2.9 270 31 .37 59 2.9 3.1 80 36 .23 18 2.7 7.8 370 63 8.2 370 60 8.0 370 57 900   150 13000
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.06_false-no-overflow.c .13  24 1.0  .080 9.7 .89 .072 8.9 .43 3.0 270 27 .16 33 2.0 .045 4.6 .14 .027 4.6 .27  .12  26 1.0  .41 82 4.8 3.0 270 27 .37 58 3.1 3.3 82 43 .22 17 2.6 7.9 370 67 7.4 330 53 7.9 350 55 3.5 150 34
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.07_false-no-overflow.c .13  24 .92 .074 9.6 .53 .067 9.1 .53 3.3 280 31 .14 33 1.5 .038 4.6 .17 .043 4.7 .17  .085 26 .97 .43 85 5.6 3.3 280 31 .34 58 4.2 3.1 84 45 .23 18 2.8 7.7 350 61 6.8 340 57 7.6 340 63 3.5 150 39
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.08_false-no-overflow.c .13  24 .97 .070 8.9 .49 .087 8.8 .46 3.2 260 31 .14 34 1.8 .038 4.6 .17 .030 4.8 .16  .10  26 .86 .43 83 5.1 3.1 260 28 .38 59 3.2 3.1 83 42 .23 17 2.5 8.0 370 55 8.0 370 68 7.7 350 57 3.6 150 44
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.09_false-no-overflow.c .12  24 1.1  .072 9.3 .57 .071 9.3 .56 3.1 270 29 .15 33 1.8 .027 4.6 .23 .029 4.6 .17  .095 26 1.3  .44 80 6.2 3.0 270 32 .36 59 3.4 3.2 86 44 .25 18 3.3 8.7 360 67 8.9 350 71 8.7 370 68 3.4 150 35
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.10_false-no-overflow.c .11  24 1.1  .068 9.3 .55 .065 9.6 .49 3.1 260 27 .17 33 1.4 .036 4.7 .16 .030 4.6 .14  .084 26 .83 900    200 12000   3.1 270 31 .36 59 3.5 3.1 83 39 .27 18 2.7 8.6 350 78 9.7 410 81 8.4 370 64 3.5 150 32
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.11_false-no-overflow.c .14  24 1.0  .092 9.7 .78 .074 9.1 .47 3.0 270 27 .22 33 2.7 .033 4.6 .19 .031 4.6 .20  .16  26 1.9  .42 83 4.3 3.0 270 31 .37 59 3.4 3.3 82 34 .24 18 3.0 7.8 370 61 7.0 340 55 7.9 370 60 3.6 150 37
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.12_false-no-overflow.c .11  24 1.2  .066 9.3 .86 .069 9.3 .47 3.0 270 27 .16 34 1.9 .033 4.7 .29 .051 4.7 .16  .10  26 1.2  900    75 9800   3.0 270 31 .36 59 3.0 3.1 81 40 .22 19 2.5 6.8 340 61 8.1 360 57 7.9 370 57 6.5 150 74
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.13_false-no-overflow.c .12  24 1.1  .065 9.4 .50 .13  8.6 .35 3.0 270 25 .17 33 2.1 .031 4.7 .12 .037 4.6 .23  .11  26 1.5  110    83 1400   3.0 270 29 .36 59 3.5 3.1 83 39 .23 20 3.1 7.7 340 59 7.0 360 52 7.7 360 55 5.2 150 62
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.14_false-no-overflow.c .13  23 1.0  .12  9.8 .51 .070 9.8 .48 3.1 270 30 .19 33 2.0 .031 4.6 .15 .035 4.6 .25  .11  26 1.1  .40 83 6.2 3.0 270 29 .41 59 2.9 3.1 82 38 .23 18 2.6 7.9 350 59 7.9 370 58 7.3 340 57 3.5 150 33
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.15_false-no-overflow.c .12  24 .89 .079 10   .45 .12  8.5 .32 3.1 270 25 .14 34 1.5 .028 4.6 .18 .032 4.7 .28  .11  26 .83 .39 82 5.6 3.0 270 28 .36 59 3.4 3.1 76 39 .22 18 2.8 7.7 370 61 7.8 370 54 7.9 370 63 11   150 120
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.16_false-no-overflow.c .11  24 1.0  .11  9.3 .34 .064 9.7 .62 3.0 270 28 .13 33 1.7 .044 4.6 .15 .030 4.8 .33  .081 26 .80 900    78 11000   3.0 270 28 .35 59 4.8 3.0 77 40 .22 17 2.5 7.4 350 64 7.1 340 57 7.1 340 55 55   150 650
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.17_false-no-overflow.c .15  23 .94 .061 10   .57 .060 9.6 .62 3.0 270 29 .13 33 1.7 .028 4.7 .18 .036 4.6 .22  .083 26 .88 250    77 2800   2.9 270 28 .36 59 3.0 3.1 110 38 .23 18 3.4 7.0 360 55 7.7 370 66 7.2 340 59 51   150 590
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.18_false-no-overflow.c .12  24 .89 .12  8.9 .37 .078 9.2 .43 2.9 270 27 .14 33 1.7 .027 4.6 .24 .059 4.6 .25  .092 26 .91 3.1  79 40   2.9 270 30 .36 59 3.4 3.1 84 46 .24 18 2.9 7.5 340 58 7.8 370 67 7.0 340 55 3.7 150 42
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.19_false-no-overflow.c .12  24 .96 .062 10   .68 .059 9.8 .57 2.8 270 28 .17 34 1.7 .034 4.6 .21 .029 4.7 .19  .12  26 .98 .42 79 5.6 2.9 270 28 .38 58 3.8 3.2 81 41 .23 19 2.9 7.8 360 60 8.3 370 64 7.9 360 58 14   150 170
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.21_false-no-overflow.c .11  24 .99 .080 9.8 .38 .066 9.2 .46 3.1 270 28 .15 34 1.5 .034 4.6 .18 .028 4.6 .21  .11  26 .96 900    78 11000   3.0 270 27 .38 59 3.1 3.1 82 37 .25 18 2.6 7.2 330 52 7.3 350 50 6.8 340 57 96   150 1200
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex2.22_false-no-overflow.c .12  24 .95 .071 9.5 .41 .073 9.1 .41 3.1 270 27 .13 33 1.8 .057 4.6 .18 .036 4.8 .21  .084 26 .94 900    4300 9800   2.9 260 29 .37 59 2.9 3.1 82 40 .24 18 2.7 7.6 350 60 7.6 340 60 8.3 370 63 900   150 11000
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex3.02_false-no-overflow.c .12  24 .97 .068 9.3 .59 .062 9.2 .47 3.0 270 28 .14 33 1.6 .036 4.6 .24 .031 4.6 .21  .10  26 .80 .40 82 4.2 3.0 270 31 .38 59 3.7 3.1 82 34 .27 23 2.4 6.6 330 57 7.9 370 56 7.6 360 60 3.4 150 32
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex3.03_false-no-overflow.c .12  24 .95 .072 9.5 .50 .080 9.0 .42 3.0 270 31 .15 33 1.9 .053 4.6 .15 .028 4.6 .18  .11  26 .92 .39 83 4.2 3.1 270 27 .37 58 3.7 3.1 85 39 .25 18 2.9 6.6 340 53 8.4 360 61 7.9 360 57 3.6 150 36
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex3.04_false-no-overflow.c .13  24 .97 .077 9.5 .54 .072 9.1 .40 3.0 270 25 .17 34 1.9 .040 4.7 .27 .029 4.6 .18  .10  26 1.4  .40 82 5.8 2.9 280 27 .40 59 3.6 3.2 87 42 .23 18 2.4 7.7 370 64 8.1 370 67 8.1 370 57 3.6 200 39
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex3.05_false-no-overflow.c .15  24 1.1  .11  8.2 .42 .11  9.6 .36 3.1 270 29 .15 34 1.9 .031 4.7 .13 .027 4.6 .23  .087 26 .89 .40 79 5.4 3.1 270 26 .37 59 2.7 3.2 85 44 .23 18 3.0 7.2 340 57 7.6 350 55 8.0 370 59 3.7 150 34
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex3.06_false-no-overflow.c .11  24 1.0  .072 8.9 .54 .076 9.6 .40 3.0 260 26 .15 34 1.5 .047 4.6 .15 .028 4.7 .17  .081 26 .87 .41 83 4.5 2.9 260 28 .39 59 3.9 3.2 85 37 .23 18 2.8 8.4 360 62 8.4 370 63 8.0 370 69 3.8 150 34
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex3.07_false-no-overflow.c .12  24 1.1  .068 9.7 .57 .069 9.2 .44 3.1 270 27 .14 33 2.0 .047 4.5 .21 .038 4.8 .24  .086 26 .94 530    78 7100   3.1 270 29 .40 59 3.0 3.2 85 39 .23 18 2.5 7.7 350 62 6.6 330 53 8.0 360 70 180   150 2600
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex3.08_false-no-overflow.c .12  24 1.1  .096 8.4 .42 .061 10   .59 3.0 270 26 .14 33 1.4 .036 4.7 .19 .031 4.6 .16  .098 26 .87 330    100 4800   3.0 270 28 .37 59 3.4 3.2 82 42 .22 17 2.6 7.1 330 59 7.8 360 70 7.5 370 59 12   150 130
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex3.09_false-no-overflow.c .12  24 .98 .097 9.3 .43 .13  8.9 .34 3.3 290 29 .15 34 1.7 .034 4.6 .18 .033 4.5 .19  .11  26 .78 270    630 2700   3.3 290 27 .36 59 3.2 3.1 83 40 .24 17 2.8 7.8 370 55 7.8 360 68 8.0 360 60 3.6 150 34
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex3.10_false-no-overflow.c .12  24 .95 .080 9.5 .54 .062 9.7 .49 3.2 270 31 .16 33 1.9 .033 4.8 .24 .027 4.6 .20  .11  26 .89 150    77 2200   3.1 270 26 .38 59 3.3 3.2 86 39 .24 19 3.0 7.8 360 60 8.1 360 61 7.2 350 56 180   150 2400
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Ex4.01_false-no-overflow.c .12  24 1.1  .085 9.5 .57 .061 9.1 .56 2.9 270 26 .14 34 1.8 .039 4.6 .15 .046 4.6 .18  .11  26 .87 .42 79 4.7 3.0 280 27 .37 59 2.9 3.2 87 44 .26 18 2.8 7.8 360 56 7.7 350 60 7.9 370 59 3.6 150 38
termination-crafted-lit/ChenFlurMukhopadhyay-SAS2012-Fig1_false-no-overflow.c .16  24 .81 .068 9.6 .54 .064 9.6 .53 3.1 270 28 .14 33 1.6 .049 4.6 .21 .033 4.6 .29  .16  26 2.6  740    77 9600   3.0 270 29 .36 59 3.3 3.2 83 48 .23 18 2.6 7.9 360 65 8.4 370 56 7.6 360 66 180   150 2100
termination-crafted-lit/ColonSipma-TACAS2001-Fig1_false-no-overflow.c .12  24 1.1  .063 9.4 .60 .074 9.1 .46 3.0 270 30 .17 33 1.7 .048 4.6 .19 .048 4.6 .16  .085 26 .89 900    83 9300   3.0 270 29 .39 59 4.4 3.1 84 42 .24 18 2.9 8.4 370 62 8.3 340 61 8.3 360 64 33   150 440
termination-crafted-lit/GulavaniGulwani-CAV2008-Fig1a_false-no-overflow.c .13  24 1.0  .073 8.8 .56 .064 9.0 .53 3.1 270 26 .16 33 1.6 .058 4.6 .15 .041 4.7 .22  .090 26 .99 900    83 11000   3.0 270 26 .37 58 3.2 3.1 83 34 .25 18 2.6 7.4 340 64 7.2 350 61 8.1 370 61 490   150 5600
termination-crafted-lit/GulavaniGulwani-CAV2008-Fig1b_false-no-overflow.c .12  24 1.1  .071 9.6 .53 .059 9.2 .62 3.0 270 26 .14 33 1.7 .031 4.6 .26 .036 4.6 .12  .086 26 .98 900    82 12000   3.0 270 34 .36 59 4.0 3.2 90 44 .24 19 2.9 8.0 360 57 7.3 340 55 8.2 370 63 230   150 3000
termination-crafted-lit/GulavaniGulwani-CAV2008-Fig1c_false-no-overflow.c .12  24 1.0  .12  8.9 .39 .077 8.7 .39 3.0 260 27 .14 33 1.7 .030 4.7 .23 .036 4.6 .24  .10  26 .94 250    670 3300   3.1 270 30 .39 59 3.3 3.1 83 36 .22 17 2.6 7.5 350 62 6.8 340 55 6.9 330 62 200   150 2200
termination-crafted-lit/GulwaniJainKoskinen-PLDI2009-Fig1_false-no-overflow.c .12  24 .98 .14  9.4 .41 .076 9.1 .36 3.2 270 27 .14 33 2.0 .046 4.8 .16 .036 4.6 .11  .084 26 .83 330    4100 3800   3.1 270 27 .38 59 3.2 3.1 96 36 .27 18 3.3 8.3 360 62 7.9 340 67 8.0 360 59 480   150 7100
termination-crafted-lit/HarrisLalNoriRajamani-SAS2010-Fig2_false-no-overflow.c .14  24 1.1  .080 9.5 .57 110     4500   1300    3.6 290 33 .14 34 1.6 .055 4.8 .16 .031 4.6 .23  .082 26 1.0  180    78 2000   3.6 290 33 .38 59 3.5 3.3 86 37 .24 18 2.9 10   390 78 13   490 120 9.0 380 77 900   150 12000
termination-crafted-lit/HeizmannHoenickeLeikePodelski-ATVA2013-Fig2_false-no-overflow.c .13  24 1.1  .088 10   .67 .075 9.6 .34 3.0 270 31 .17 34 2.2 .052 4.7 .12 .031 4.6 .24  .10  26 1.4  93    78 1200   2.9 270 26 .37 58 3.8 3.2 82 37 .22 18 3.0 6.7 330 55 7.6 360 63