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Chapter 2
What is CIVL?

CIVL stands for Concurrency Intermediate Verification Language. The CIVL platform encom-
passes:

1. the programming language CIVL-C, a dialect of C with additional primitives supporting
concurrency, specification, and modeling;

2. verification and analysis tools, including a symbolic execution-based model checker for check-
ing various properties of, or finding defects in, CIVL-C programs; and

3. tools that translate from many commonly used languages/APIs to CIVL-C.

The CIVL-C language is primarily intended to be an intermediate representation for verification.
A C program using MPI [2], CUDA [3], OpenMP [4], OpenCL [I], or another API (or even some
combination of APIs), will be automatically translated into CIVL-C and then verified. The advan-
tages of such a framework are clear: the developer of a new verification technique could implement
it for CIVL-C and then immediately see its impact across a broad range of concurrent programs.
Likewise, when a new concurrency API is introduced, one only needs to implement a translator from
it to CIVL-C in order to reap the benefits of all the verification tools in the platform. Programmers
would have a valuable verification and debugging tool, while API designers could use CIVL as a
“sandbox” to investigate possible API modifications, additions, and interactions.

This manual covers all aspects of the CIVL framework, and is organized in parts as follows:

1. this introduction, including “quick start” instructions for downloading and installing CIVL
and several examples;

2. a complete description of the CIVL-C language;
3. a formal semantics for the language; and

4. a description of the tools in the framework.



Chapter 3

Installation and Quick Start

This chapter gives instructions for downloading and installing CIVL, and running the verification
tool on an example.

Notes

e The instructions say to install three theorem provers. In reality, each of these is optional.

CIVL will still work without any theorem provers, but the results will not be very precise,
i.e., it will produce a lot of false warnings. The more provers you install, the more precise the
analysis.

Instructions

1.

Install the automated theorem prover CVC3 (if you have not already). The easiest way to
do this is to visit http://www.cs.nyu.edu/acsys/cvc3/download.html and download the
latest, optimized build with static library and executable for your OS. Place the executable
file cve3 somewhere in your PATH. You can discard everything else. Alternatively, on some
linux systems, CVC3 can be installed using the package manager via “sudo apt-get install
cvcd”. This will place cvec3 in /usr/bin.

. Install the automated theorem prover CVC4 (if you have not already). The easiest way to

do this is to visit http://cvcd.cs.nyu.edu/downloads/ and choose one of the installation
approaches. You only need the binary (cvc4), and you must put it in your PATH. Alternatively,
on OS X you may install using MacPorts by “sudo port install cvc4”.

Install the automated theorem prover Z3 (if you have not already). Follow instructions at
http://z3.codeplex.com/SourceControl/latest#README. Make sure the executable z3 is
in your path.

Install a Java 7 SDK if you have not already. Go to http://www.oracle.com/technetwork/
java/javase/downloads/ for the latest from Oracle. On linux, you can instead use the
package manager: “sudo apt-get install openjdk-7-jdk”.

Download and unpack the latest stable release of CIVL from http://vsl.cis.udel.edu/
civll

The resulting directory should be named CIVL-tag for some string tag which identifies the
version of CIVL you downloaded. Move this directory wherever you like.


http://www.cs.nyu.edu/acsys/cvc3/download.html
http://cvc4.cs.nyu.edu/downloads/
http://z3.codeplex.com/SourceControl/latest#README
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://vsl.cis.udel.edu/civl
http://vsl.cis.udel.edu/civl
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7. The JAR file in the 1ib directory is all you need to run CIVL. You may move this JAR
file wherever you want. You run CIVL by typing a command of the form “java -jar
/path/to/civl-TAG. jar ...”. For convenience, you may instead use the shell script civl in-
cluded in the bin directory. This allows you to replace “java -jar /path/to/civ1-TAG. jar”
with just “civl” on the command line. Simply edit the civl script to reflect the path to the
JAR file and place the script somewhere in your PATH. Alternatively, you can define an alias
in your .profile, .bash_profile, .bashrc, or equivalent, such as

alias civl=’java -jar /path/to/civl1-TAG. jar’

In the following, we will assume that you have defined a command civl in one of these ways.

8. From the command line, type “civl help”. You should see a help message describing the
command line syntax.

9. From the command line, type “civl config”. This should report that cve3, cvc4, and z3
were found, and it should create a file called .sarl in your home directory.

To test your installation, copy the file examples/concurrency/locksBad.cvl to your work-
ing directory. Look at the program: it is a simple 2-process program with two shared variables
used as locks. The two processes try to obtain the locks in opposite order, which can lead
to a deadlock if both processes obtain their first lock before either obtains the second. Type
“civl verify locksBad.cvl”. You should see some output culminating in a message

The program MAY NOT be correct. See CIVLREP/locksBad_log.txt

Type “civl replay locksBad.cvl”. You should see a step-by-step account of how the program
arrived at the deadlock.
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Examples

In this section we show a few simple CIVL-C programs which illustrate some of the pertinent
features of the language. We also show the results of running some of the tools on them.

4.1 Dining Philosophers

Dijkstra’s well-known Dining Philosophers system can be encoded in CIVL-C as shown in Figure
4.1

In this encoding, an upper bound B is placed on the number of philosophers n. When verifying
this program, a concrete value will be specified for B. Hence the result of verification will apply to
all n between 2 and B, inclusive.

Both B and n are delcared as input variables using the type qualifier $input. An input variable
may be initialized with any valid value of its type. In contrast, non-input variables declared in file
scope will be initialized with a special undefined value; if such a variable is read before it is defined,
an error will be reported. In addition, any input variable may have a concrete initial value specified
on the command line. In this case, we will specify a concrete value for B on the command line but
leave n unconstrained.

An $assume statement restricts the set of executions of the program to include only those traces
in which the assumptions hold. In contrast with an $assert statement, CIVL does not check that
the assumed expression holds, and will not generate an error message if it fails to hold. Thus an
$assume statement allows the programmer to say to CIVL “assume that this is true,” while an
$assert statement allows the programmer to say to CIVL “check that this is true.”

A $when statement encodes a guarded command. The $when statement includes a boolean
expression called the guard and a statement body. The $when statement is enabled if and only if
the guard evaluates to true, in which case the body may be executed. The first atomic statement in
the body executes atomically with the evaluation of the guard, so it is guaranteed that the guard
will hold when this initial sub-statement executes. Since assignment statements are atomic in CIVL,
in this example the bodiy of each $when statement executes atomically with the guard evaluation.

The $spawn statement is very similar to a function call. The main difference is that the function
called is invoked in a new process which runs concurrently with the existing processes. The $spawn
statement itself returns immediately.

The program may be verified for an upper bound of 5 by typing the following at the command
line:

civl verify -inputB=b5 diningBad.cvl

10
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#include <civlc.h>

$input int B; // upper bound on number of philosophers

$input int n; // number of philosophers

$assume 2<=n && n<=B;

_Bool forks([n]; // Each fork will be on the table (0) or in a hand (1).

void dine(int id) {
int left = id;
int right = (id + 1) % n;

while (1) {
$when (forks[left] == 0) forks[left] = 1;
$when (forks[right] == 0) forks[right] = 1;

forks[right] = 0;
forks[left] = 0;
}
}

void main() {
for (int i = 0; i < n; i++) forks[i] = 0;
for (int i = 0; i < n; i++) $spawn dine(di);

¥

Figure 4.1: diningBad.cvl: CIVL-C encoding of Dijkstra’s Dining Philosophers

The output indicates that a deadlock has been found and a counterexample has been produced
and saved. We can examine the counterexample, but it is more helpful to work with a minimal
counterexample, i.e., a deadlocking trace of minimal length. To find a minimal counterexample, we
issue the command

civl verify —-inputB=b -min diningBad.cvl

The result of this command is shown in Figure [£.2] The output indicates that a minimal
counterexample has length 19, i.e., involves 20 states and 19 transitions (the depth of 20 is one
more than 19). It was the 26th and shortest trace found. It was deemed equivalent to the earlier
traces and hence the earlier ones were discarded and only this one saved. We can replay the trace
with the command

civl replay diningBad.cvl

The result of this command is shown in Figure [£.3] The output indicates that a deadlock has
been found involving 2 philosophers. The trace has 15 transitions; after the initialization sequence,
each philosopher picks up her left fork.

4.2 A Multithreaded MPI Example

Figure[4.4]is an example of a CIVL-C model of multithreaded MPI program. The program consists of
two processes, each of which spawns two threads. All four threads issue message-passing operations.
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This example illustrates some of the message-passing primitives provided in CIVL-C. A global
communicator object is allocated in the root scope. The constant $here has type $scope and refers
to the scope in which the expression occurs; in this case it is the root (i.e., file) scope. This global
communicator is declared to have NPROCS places; these are points from which messages can be sent
or received. The function MPI_Process is used to model an MPI process. Each instance will create
its own local communicator object which specifies the global communicator and a place; this is the
object that will be used to send or receive messages at that place.

Each process spawns two instances of function Thread. Each thread creates a message object
from a buffer, specifying the source and destination places, tag, pointer to the beginning of the
buffer, and the size of the buffer. The message is enqueued into the communication universe using
the local communicator. Similarly, messages are dequeued by specifying the local communicator,
source place, and tag.

The program has a subtle defect, which only manifests on very specific interleavings of the
threads. This defect can be found using civl verify.

4.3 Verifying C programs

CIVL can be used to verify C programs, with a number of transformers. One can also insert macros
to C programs to tune it for verification, which, most of time, involves defining input variables.
This is usually accomplished by the default macro CIVL.

For example, Figure is a simple program that computes the sum of a number of positive
numbers. The program can be compiled by any C compiler, as long as no _.CIVL macro is defined
in the command for compiling. When CIVL runs this program, it will automatically have _CIVL
defined and thus N becomes an input variable and sum becomes an output variable and there is an
assertion to check the correctness the sum computed by the program.

If one wants to CIVL to treat a program as it is originally, then the command line option -_CIVL
can be set to false to disable the _CIVL macro.

4.3.1 Verifying MPI C programs

CIVL generates default input variables for verifying MPI programs:
e _NPROCS: number of MPI processes to be created;

e NPROCS_LOWER_BOUND,/_NPROCS_UPPER_BOUND: lower /upper bound of the number of MPI pro-
cesses to be created.

CIVL requires at least either NPROCS or -NPROCS_UPPER _BOUND be specified in the command line
in order to verify MPI programs. For example, one can specify civl verify -input NPROCS=5
ring.c.

4.3.2 Veritying OpenMP C programs

CIVL introduces a default input variables THREAD MAX for OpenMP programs. Usually, THREAD MAX
needs to be specified in the command line. CIVL will create 1 to THREAD_MAX-1 threads for all
OpenMP parallel region during the verification. If THREAD MAX is not specified, then somewhere
in the OpenMP program must be specifying the number of threads explicitly. By default, CIVL
applies simplification to OpenMP based on independent loop analysis, and optimally that might
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reduce the program to be purely sequential. The option ompNoSimplify can be set to false so
as to skip such simplification. Another option, ompLoopDecomp can be used to specify the loop
decomposition strategy, which can be ALL, ROUND_ROBIN or RANDOM.

4.3.3 Veritying Pthreads C and CUDA C programs

There are no special option or default input variables for Pthreads or CUDA programs.
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CIVL v0.15 of 2014-12-23 -- http://vsl.cis.udel.edu/civl
Error O encountered at depth 129:

Error 25 encountered at depth 16:

CIVL execution error (kind: DEADLOCK, certainty: PROVEABLE)

A deadlock is possible:
Path condition: true
Enabling predicate: false

ProcessState 0: terminated

ProcessState 1: at location 26, £0:21.30-42 "forks[right]"
Enabling predicate: false

ProcessState 2: at location 26, £0:21.30-42 "forks[right]"
Enabling predicate: false

at £0:21.30-42 "forks[right]".

State 664

Path condition

| true

Dynamic scopes

dyscope 0 (parent=-1, static=0)

reachers = {1,2}

variables

__atomic_lock_var = process<-1>

B

n

I
|
|
|
|
I
|
I =5
| =2
I

|
[
[ ]
[
[ ]|
[ 1]
| | | forks = X_sOv4[0:=1, 1:=1]
| Process states

atomicCount = 0

call stack
| Frame[function=dine, location=25, £0:21.30-42 "forks[right]", scope=3]

process 2
|
I
|

=== Stats

validCalls : 15327
proverCalls 1 17
memory (bytes) : 18554880
time (s) 1 2.17
maxProcs : 6
statesInstantiated : 9264
statesSaved : 665
statesSeen : 1758
statesMatched : 1177
steps : 2993
transitions : 2934

The program MAY NOT be correct. See CIVLREP/diningBad_log.txt

Figure 4.2: Output from civl verify -inputB=5 -min diningBad.cvl
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Transition 1: State 0, proc O:
0->1: B =5 at £0:9.0-12 "$input int B";
1->2: n = InitialValue(n) at £0:10.0-12 "$input int n";
2->3: $assume ((2<=n)&&(n<=B)) at f0:11.0-20 "$assume 2<=n && n ... B";
3->5: forks = InitialValue(forks) at f0:13.0-12 "int forks[n]";
5->6: i = 0 at £0:28.7-16 "int i1 = 0";
--> State 1

Transition 2: State 1, proc O:
6->8: LOOP_TRUE_BRANCH at £0:28.18-23 "i < n";
-—> State 2

Transition 12: State 12, proc 2:

18->19: left = id at f0:16.2-15 "int left = id";

19->20: right = ((id+1)%n) at £0:17.2-26 "int right = (id ... n";
--> State 13

Transition 13: State 13, proc 2:
20->23: LOOP_TRUE_BRANCH at £f0:19.9-10 "1";
-—-> State 14

Transition 14: State 14, proc 1:

23->25: forks[left] = 1 at £0:20.29-44 "forks[left] = 1";
--> State 15
Transition 15: State 15, proc 2:

23->25: forks[left] = 1 at £0:20.29-44 "forks[left] = 1";

--> State 16

Violation of Deadlock found in State 16:

A deadlock is possible:
Path condition: true
Enabling predicate: false

ProcessState 0: terminated

ProcessState 1: at location 25, £0:21.30-42 "forks[right]"
Enabling predicate: false

ProcessState 2: at location 25, £0:21.30-42 "forks[right]"
Enabling predicate: false

Trace ends after 15 transitions.
Violation(s) found.

Figure 4.3: Output from civl replay diningBad.cvl
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#include<civlc.h>
#define TAG O
#define NPROCS 2
#define NTHREADS 2

$gcomm gcomm = $gcomm_create($here, NPROCS);

void MPI_Process (int rank) {
$comm comm = $comm_create($here, gcomm, rank);
$proc threads [NTHREADS] ;

void Thread(int tid) {
int x = rank;
$message in, out = $message_pack(rank, 1-rank, TAG, &x, sizeof(int));

for (int j=0; j<2; j++) {
if (rank == 1) {
for (int i=0; i<2; i++) $comm_enqueue(comm, out);
for (int i=0; i<2; i++) in = $comm_dequeue(comm, 1-rank, TAG);
} else {
for (int i=0; i<2; i++) in = $comm_dequeue(comm, 1-rank, TAG);
for (int i=0; i<2; i++) $comm_enqueue(comm, out);
}
}
}

for (int i=0; i<NTHREADS; i++) threads[i] = $spawn Thread(i);
for (int i=0; i<NTHREADS; i++) $wait (threads[i]);
$comm_destroy (comm) ;

void main() {
$proc procs[NPROCS];

for (int i=0; i<NPROCS; i++) procs[i] = $spawn MPI_Process(i);
for (int i=0; i<NPROCS; i++) $wait(procs[il);
$gcomm_destroy(gcomm) ;

}

Figure 4.4: mpi-pthreads.cvl: CIVL-C model of a (defective) multithreaded MPI program.
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#ifdef _CIVL
#include<civlc.cvh>
#endif

#ifdef _CIVL
$input int N;
$output int sum;
#else

#define N 100
int sum;

#endif

void main() {
int localsum = 0;
for (int i = 1; i <= N; i++) {
localsum+=i;
}
sum = localsum;
#ifdef _CIVL
$assert(sum == (N+1)*N/2);
#endif
}

Figure 4.5: _CIVL: the default macro
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Chapter 5
Overview of CIVL-C

5.1 Main Concepts

CIVL-C is an extension of a subset of the C11 dialect of C. It includes the most commonly-used
elements of C, including most of the syntax, types, expressions, and statements. Missing are some
of the more esoteric type qualifiers, bitwise operations (at least for now), and much of the standard
library. Moreover, none of the C11 language elements dealing with concurrency are included, as
CIVL-C has its own concurrency primitives.

The keywords in CIVL-C not already in C begin with the symbol $. This makes them readily
identifiable and also prevents any naming conflicts with identifiers in C programs. This means that
most legal C programs will also be legal CIVL-C programs.

One of the most important features of CIVL-C not found in standard C is the ability to define
functions in any scope. (Standard C allows function definitions only in the file scope.) This feature
is also found in GNU C, the GNU extension of C.

Another central CIVL-C feature is the ability to spawn functions, i.e., run the function in a new
process (thread).

Scopes and processes are the two central themes of CIVL-C. Each has a static and a dynamic
aspect. The static scopes correspond to the lexical scopes in the program—typically, regions de-
limited by curly braces {...}. At runtime, these scopes are instantiated when control in a process
reaches the beginning of the scope. Processes are created dynamically by spawning functions; hence
the functions are the static representation of processes.

5.2 Example Illustrating Scopes and Processes

To understand the static and dynamic nature of scopes and processes, and the relations between
them, we consider the (artificial) example code of Figure . The static scopes in the scope are
numbered from 0 to 6.

The static scopes have a tree structure: one scope is a child of another if the first is immediately
contained in the second. Scope 0, which is the file scope (or root scope) is the root of this tree.
The static scope tree is depicted in Figure (left). Each scope is identified by its integer ID.
Additionally, if the scope happens to be the scope of a function definition, the name of the function
is included in this identifier. A node in this tree also shows the variables and functions declared in
the scope. For brevity, we omit the proc variables.

We now look at what happens when this program executes. Figure (right) illustrates a

19
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0
int x;
void f() {1
int y;
void f1() {2 ...}
if (x>0) {3
int z;
void f2() {4 int w; ...}
$proc p2=$spawn fl();
$proc p3=$spawn fl();
$proc pé4=$spawn f2();
£2();
}
}
void g() {5 ... }
void main() {(6
$proc pl=$spawn f();
g():
}

Figure 5.1: CIVL-C code skeleton to illustrate scope hierarchy

possible state of the program at one point in an execution. We now explain how this state is arrived
at.

First, there is an implicit root function placed around the entire code. The body of the main
function becomes the body of the root function, and the main function itself disappears. This minor
transformation does not change the structure of the scope tree.

Execution begins by spawning a process py to execute the root function. This causes scope 0 to
be instantiated. An instance of a static scope is known as a dynamic scope, or dyscopes for short.
The dynamic scopes are represented by the ovals with double borders on the right side of Figure
(.2l Each dyscope specifies a value for every variable declared in the corresponding static scope. In
this case, the value 3 has been assigned to variable x.

The state of process py is represented by a call stack (green). The entries on this stack are
activation frames. Fach frame contains two data: a reference to a dyscope (indicated by blue
arrows) and a current location (or programmer counter vaule) in the static scope corresponding to
that dyscope (not shown). The dyscope defines the environment in which the process evaluates
expressions and executes statements. The currently executing function of a process, corresponding
to the top frame in the call stack, can “see” only the variables in its dyscope and those of all the
ancestors of its dyscope in the dyscope tree.

Returning to the example, py enters scope 6, instanitating that scope, and then spawns procedure
f. This creates process p;, with a new stack with a frame pointing to a dyscope corresponding to
static scope 1. The new process proceed to run concurrently with py. Meanwhile, py calls procedure
g, which pushes a new entry onto its call stack, and instantiates scope 5. Hence py has two entries
on its stack: the bottom one pointing to the instance of scope 6, the top one pointing to the instance
of scope 5.

Meanwhile, assume x > 0, so that p; takes the true branch of the if statement, instantiating
scope 3 under the instance of scope 1. It then spawns two copies of procedure f1, creating processes
p2 and p3 and two instances of scope 2. Then p; spawns £2, creating process ps and an instance of
scope 4. Note that the instance of scope 4 is a child of the instance of scope 3, since the (static)
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O®

scope ID

variable decls
function decls

Figure 5.2: Static scope tree and a state for example program

scope 4 is a child of scope 3. Finally, p; calls £2, pushing a new entry on its stack and creating
another instance of scope 4. The final state arrived at is the one shown.
There are few key points to understand:

In any state, there is a mapping from the dyscope tree to the static scope tree which maps a
dyscope to the static scope of which it is an instance. This mapping is a tree homomorphism,
i.e., if dyscope wu is a child of dyscope v, then the static scope corresponding to u is a child of
the static scope corresponding to v.

A static scope may have any number of instances, including 0.

Dynamic scopes are created when control enters the corresponding static scope; they disappear
from the state when they become unreachable. A dyscope v is “reachable” if some process
has a frame pointing to a dyscope u and there is a path from u up to v that follows the parent
edges in the dyscope tree.

Processes are created when functions are spawned; they disappear from the state when their
stack becomes empty (either because the process terminates normally or invokes the exit
system function).

5.3 Structure of a CIVL-C program

A CIVL-C program is structured very much like a standard C program. In particular, a CIVL-
C program may use the preprocessor directives specified in the C Standard, and with the same
meaning. A source program is preprocessed, then parsed, resulting in a translation unit, just as
with standard C. The main differences are the nesting of function definitions and the new primitives
beginning with $, which are described in detail in the remainder of this part of the manual.

A CIVL-C program must begin with the line

#include <civlc.h>
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which includes the main CIVL-C header file, which declares all the types and other CIVL primitives.

As usual, a translation unit consists of a sequence of variable declarations, function prototypes,
and function definitions in file scope. In addition, assume statements may occur in the file scope.
These are used to state assumptions on the input values to a program.



Chapter 6

Sequential Elements

In this chapter we describe the main sequential elements of the language. For the most part these
are the same as in C. Primitives dealing with concurrency are introduced in Chapter [7]

6.1 Types

6.1.1 Standard types inherited from C

The civlc.cvh defines standard types inherited from C. The boolean type is denoted _Bool, as in
C. Its values are 0 and 1, which are also denoted by $false and $true, respectively.

There is one integer type, corresponding to the mathematical integers. Currently, all of the C
integer types int, long, unsigned int, short, etc., are mapped to the CIVL integer type.

There is one real type, corresponding to the mathematical real numbers. Currently, all of the C
real types double, float, etc., are mapped to the CIVL real type.

Array types, struct and union types, char, and pointer types (including pointers to functions)
are all exactly as in C.

6.1.2 The bundle type: $bundle

CIVL-C includes a type named $bundle, declared in the CIVL-C standard header bundle.cvh. A
bundle is basically a sequence of data, wrapped into an atomic package. A bundle is created using
a function that specifies a region of memory. One can create a bundle from an array of integers,
and another bundle from an array of reals. Both bundles have the same type, $bundle. They can
therefore be entered into an array of $bundle, for example. Hence bundles are useful for mixing
objects of different (even statically unknown) types into a single data structure. Later, the contents
of a bundle can be extracted with another function that specifies a region of memory into which
to unpack the bundle; if that memory does not have the right type to receive the contents of the
bundle, a runtime error is generated. The bundle type and its functions are provided by the library
bundle.cvh.
The relevant functions for creating and manipulating bundles are given in Section [10.1.6]

6.1.3 The $scope type

An object of type $scope is a reference to a dynamic scope. It may be thought of as a “dynamic
scope ID, ” but it is not an integer and cannot be converted to an integer. Operations defined on

23
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scopes are discussed in Section [6.2.2]

6.1.4 The $range and $domain types

CIVL-C provides certain abstract datatypes that are useful for representing iteration spaces of loops
in an abstract way.

First, there is a built-in type $range. An object of this type represents an ordered set of integers.
There are expressions for specifying range values; these are described in Section [6.2.3.1 Ranges are
typically used as a step in constructing domains, described next.

A domain type is used to represent a set of tuples of integer values. Every tuple in a domain
object has the same arity (i.e., number of components). The arity must be at least 1, and is called
the dimension of the domain object.

For each integer constant expression n, there is a type $domain(n), representing domains of
dimension n. The wuniversal domain type, denoted $domain, represents domains of all positive
dimensions, i.e., it is the union over all n > 1 of $domain(n). In particular, each $domain(n) is a
subtype of $domain.

There are expressions for specifying domain values; these are described in Section There
are also certains statements that use domains, such as the “CIVL-for” loop $for; see Section [6.3.3]

6.2 Expressions

6.2.1 Expressions inherited from C

The following C expressions are included in CIVL:
e constant expressions
e identifier expressions (x)
e parenthetical expressions ((e))

e numerical addition (a+b), subtraction (a-b), multiplication (a*b), division (a/b), unary plus
(+a), unary minus (-a), integer division (a/b) and modulus (a)kb), all with their ideal math-
ematical interpretations

e array index expressions (ale]) and struct or union navigation expressions (x.f, p—>f)

e address-of (&e), pointer dereference (*p), pointer addition (p+i) and subtraction (p-q) ex-
pressions

e relational expressions (a==b, a!=b, a>=b, a<=b, a<b, a>b)

e logical not (!p), and (p&&q), and or (pllq)

e sizeof a type (sizeof (t)) or expression (sizeof (e))

e assignment expressions (a=b, a+=b, a-=b, a*=b, a/=b, a)=b, a++, a--)
e function calls £(el,...,en)

e conditional expressions (b ? e : f).
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e cast expressions ((t)e)

Bit-wise operations are not yet supported.

6.2.2 Scope expressions

As mentioned in Section [6.1.3] CIVL-C provides a type $scope. An object of this type is a reference
to a dynamic scope. Several constants, expressions, and functions dealing with the $scope type are
also provided.

The $scope type is like any other object type. It may be used as the element type of an array,
a field in a structure or union, and so on. Expressions of type $scope may occur on the left or
right-hand sides of assignments and as arguments in function calls just like any other expression.
Two different variables of type $scope may be aliased, i.e., they may refer to the same dynamic
scope.

A dynamic scope ¢ is reachable if there exists a path which starts from the dyscope referenced
by some frame on the call stack of a process, follows the parent edges in the dyscope tree, and
terminates in §. If a dyscope is not reachable, it can never become reachable, and it cannot have
any effect on the subsequent execution of the program.

Normally, a dynamic scope will eventually become unreachable. At some point after it becomes
unreachable, it will be collected in a garbage-collection-like sweep, and any existing references to
that scope will become undefined. An object of type $scope is also undefined before it is initialized.
Any use of an undefined value is reported as an error by CIVL, so it is important to be sure that a
scope variable is defined before using it.

6.2.2.1 Checking if a dyscope is defined: $scope_defined
The header civlc.cvh provides a function $scope_defined, which checks if a given value of $scope
type is defined, as described in Section (10.1.1.6

6.2.2.2 The constant $here

A constant $here exists in every scope. This constant has type $scope and refers to the dynamic
scope in which it is contained. For example,

{ // scope s
int *p = (int*)$malloc($here, n*sizeof (int));

3

allocates an object consisting of n ints in the scope s.

6.2.2.3 The constant $root

There is a global constant $root of type $scope which refers to the root dynamic scope.

6.2.2.4 Scope relational operators

Let s; and so be expressions of type $scope. The following are all CIVL-C expressions of boolean
type:

e 51 == s9. This is true iff s; and s, refer to the same dynamic scope.
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e 51 != s9. This is true iff s; and sy refer to different dynamic scopes.

e 51 <= so. This is true iff s; is equal to or a descendant of s, i.e., s1 is equal to or contained
in ss.

® 51 < 5. This is true iff s is a strict descendant of ss, i.e., s; is contained in sy and is not
equal to ss.

® s; > s9. This is equivalent to sy < s7.
e 51 >= s9. This is equivalent to sy <= s7.

If s1 or s5 is undefined in any of these expressions, an error will be reported.

6.2.2.5 Scope parent function $scope_parent

The CIVL-C header scope. cvh provides the function $scope_parent that computes the immediate
parent of a dynamic scope, as described in Section [10.1.2]

6.2.2.6 Lowest Common Ancestor: +

The expression s; + s9, where s; and sy are expressions of type $scope, evaluates to the lowest
common ancestor of s; and sy in the dynamic scope tree. This is the smallest dynamic scope
containing both s; and ss.

6.2.2.7 The $scopeof expression

Given any left-hand-side expression expr, the expression
$scopeof (expr)

evaluates to the dynamic scope containing the object specified by expr.
The following example illustrates the semantics of the $scopeof operator. All of the assertions
hold:

{
$scope s1 = $here;
int x;
double al[10];

{
$scope s2 = $here;
int *p = &x;
double *q = &al4];

assert ($scopeof (x)==s1) ;
assert ($scopeof (p)==s2);
assert ($scopeof (*p)==s1) ;
assert ($scopeof (a)==s1);
assert ($scopeof (a[5])==s1);
assert ($scopeof (q)==s2);
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assert ($scopeof (*q)==s1) ;
}
}

6.2.3 Range and domain expressions
6.2.3.1 Regular range expressions

An expression of the form
lo .. hi

where 1o and hi are integer expressions, represents the range consisting of the integers lo,1lo +
1,...,hi (in that order).
An expression of the form

lo .. hi # step

where lo, hi, and step are integer expressions is interpreted as follows. If step is positive, it
represents the range consisting of 1o, 1o + step,lo+ 2% step, ..., up to and possibly including hi.
To be precise, the infinite sequence is intersected with the set of integers less than or equal to hi.

If step is negative, the expression represents the range consisting of hi,hi + step,hi + 2 %
step, ..., down to and possibly including lo. Precisely, the infinite sequence is intersected with the
set of integers greater than or equal to lo.

6.2.3.2 Cartesian domain expressions

An expression of the form

($domain) { r1, ..., rn }

where rl, ..., rn are n expressions of type $range, is a Cartesian domain expression. It represents
the domain of dimension n which is the Cartesian product of the n ranges, i.e., it consists of all
n-tuples (x1,...,2,) where 1 € r1, ..., x, € rn. The order on the domain is the dictionary order

on tuples. The type of this expression is $domain(n).
When a Cartesian domain expression is used to initialize an object of domain type, the “($domain)”
may be omitted. For example:

$domain(3) dom = { 0 .. 3, r2, 10 .. 2 # -2 };

6.3 Statements

6.3.1 C Statements

The usual C statements are supported:
® n0-0p (;)
e expression statements (e;)

e labeled statements, including case and default labels (1: s)
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e for (for (init; cond; inc) s), while (while (cond) s) and do (do s while (cond))
loops
° annpound,ﬁﬁtenwnts({sl;sQ;...})
e if and if ...else
® goto
e switch
e break
e continue

e return

6.3.2 Guards and nondeterminism
6.3.2.1 Guarded commands: $when

A guarded command is encoded in CIVL-C using a $when statement:
$when (expr) stmt;

All statements have a guard, either implicit or explicit. For most statements, the guard is $true.
The $when statement allows one to attach an explicit guard to a statement.

When expr is true, the statement is enabled, otherwise it is disabled. A disabled statement
is blocked—it will not be scheduled for execution. When it is enabled, it may execute by moving
control to the stmt and executing the first atomic action in the stmt.

If stmt itself has a non-trivial guard, the guard of the $when statement is effectively the con-
junction of the expr and the guard of stmt.

The evaluation of expr and the first atomic action of stmt effectively occur as a single atomic
action. There is no guarantee that execution of stmt will continue atomically if it contains more
than one atomic action, i.e., other processes may be scheduled.

Examples:

$when (s>0) s--;

This will block until s is positive and then decrement s. The execution of s-- is guaranteed to take
place in an environment in which s is positive.

$when (s>0) {s--; t++}

The execution of s-- must happen when s>0, but between s-- and t++, other processes may
execute.

$when (s>0) $when (t>0) x=y*t;

This blocks until both x and t are positive then executes the assignment in that state. It is
equivalent to

$when (s>0 && t>0) x=y*t;
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6.3.2.2 Nondeterministic selection statement: $choose

A $choose statement has the form

$choose {
stmtl;
stmt2;

default: stmt
}

The default clause is optional.

The guards of the statements are evaluated and among those that are true, one is chosen nonde-
terministically and executed. If none are true and the default clause is present, it is chosen. The
default clause will only be selected if all guards are false. If no default clause is present and all
guards are false, the statement blocks. Hence the implicit guard of the $choose statement without
a default clause is the disjunction of the guards of its sub-statements. The implicit guard of the
$choose statement with a default clause is true.

Example: this shows how to encode a “low-level” CIVL guarded transition system:

11: $choose {
$when (x>0) {x--; goto 12;}
$when (x==0) {y=1; goto 13;}
default: {z=1; goto 14;}

}

12: $choose {

}
13: $choose {

6.3.2.3 Nondeterministic choice of integer: $choose_int

The header civlc.cvh provides the function $choose_int that returns an integer between 0 and
the specified value in a nondeterministic way, as described in Section [10.1.1.5

6.3.3 Iteration using domains with $for

A CIVL-for statement has the form
$for (int i1, ..., in : dom) S

where i1, ..., in are n identifiers, dom is an expression of type $domain(n), and S is a statement.
The identifiers declare n variables of integer type. Control iterates over the values of the domain,
assigning the integer variables the components of the current tuple in the domain at the start of
each iteration. The scope of the variables extends to the end of S. The iterations takes place in
the order specified by the domain, e.g., dictionary order for a Caretesian domain. Note that if a
range expression can be used as dom here, which will be automatically converted to one dimensional
domain. For example,
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$for (int i1, ..., in : O .. 10) S
is equivalent to
$for (int i1, ..., in : ($domain(1){0 .. 10})) S

Note that if a range expression can be used as dom here, which will be automatically converted
to one dimensional domain. For example,

$for (int i1, ..., in : O .. 10) S
is equivalent to
$for (int i1, ..., in : ($domain(1)){0 .. 10}) S

There is a also a parallel version of this construct, $parfor, described in [7.3]

6.4 Functions

6.4.1 Abstract function: $abstract

An abstract function declares a function without a body, and it has the form
$abstract type function(list-of-parameters);

It is required that the function should have a non-void return type and take at least one param-
eter. The return value of the function is evaluated symbolically using the actual arguments of the
function call.



Chapter 7

Concurrency

7.1 Process creation and management

7.1.1 The process type: $proc

This is a primitive object type and functions like any other primitive C type (e.g., int). An object
of this type refers to a process. It can be thought of as a process ID, but it is not an integer and
cannot be cast to one. It is analogous to the $scope type for dynamic scopes.

Certain expressions take an argument of $proc type and some return something of $proc type.
The operators == and != may be used with two arguments of type $proc to determine whether the
two arguments refer to the same process.

7.1.2 Checking if a process is defined: $proc_defined

An object of type $proc is initially undefined, so a use of that object would result in an error. One
can check whether a $proc object is defined using the function $proc_defined, declared by the
header civlc.cvh, as described in Section (10.1.1.7]

7.1.3 The self process constant: $self

This is a constant of type $proc. It can be used wherever an argument of type $proc is called for.
It refers to the process that is evaluating the expression containing $self.

7.1.4 The null process constant: $proc_null

This is a constant of type $proc. It can be used wherever an argument of type $proc is called for.
It simply means that the object doesnt refer to any process.

7.1.5 Spawning a new process: $spawn

A spawn expression is an expression with side-effects. It spawns a new process and returns a
reference to the new process, i.e., an object of type $proc. The syntax is the same as a procedure
invocation with the keyword $spawn inserted in front:

$spawn f(exprl, ..., exprn)

Typically the returned value is assigned to a variable, e.g.,
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$proc p = $spawn f(i);

If the invoked function f returns a value, that value is simply ignored.

7.1.6 Waiting for process(es) to terminate: $wait and $waitall

Once the system function $wait($waitall) provided by the CIVL-C standard header civlc.cvh
gets invoked, it will not return until the specified process(es) terminates(terminate), as described

in Sections [10.1.1.2] and [10.1.1.2

7.1.7 Terminating a process immediately: $exit

Once the function $exit declared in the header civlc.cvh, is called, the calling process terminates
immediately, as described in Section [10.1.1.4]

7.2 Atomicity

7.2.1 Atom blocks: $atom

This defines a number of statements to be executed as a single atomic transition. An $atom block
has the following form:

$atom {
stmt1l;
stmt2;

3

The statements inside an $atom block are to be executed as one transition. It is required that
the execution of the statements in an $atom block satisfy all of the following properties:

1. deterministic: at each step in the execution of the atom block, there must be at most one
enabled statement;

2. nonblocking: at each step in the execution, there must be at least one enabled statement,
hence, together with (1), there must be exactly one enabled statement;

3. finite: the execution of the atom block must terminate after a finite number of steps; and

4. isolated: there are no jumps from outside the atom block to inside the atom block, or from
inside the atomc block to outside of it.

Violations of the deterministic, nonblocking, or isolated properties will be reported either stati-
cally or dynamically. If the finite property is violated, the verification may just run forever.

Once the process enters an $atom block is said to be executing atomly. The process remains
executing atomly until it reaches the terminating right brace of the block. Hence executing atomly
is a dynamic, not static condition. For example, the block might contain a function call which
takes the process to a point in code which is not statically contained in an atom block; that process
is nevertheless still executing atomly and is subject to the rules above. The process only stops
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executing atomly when that function call returns and control finally reaches the right curly brace
at the end of the atom block (assuming the block is not contained in another atom block).

Note: $wait or $waitall calls are not allowed in $atom blocks. The rationale for this is
that there is never a way to know for certain that another process has terminated (until $wait
or $waitall has returned) so there is never a way to be certain the $wait or $waitallcall will
not block. If one does occur in an $atom block, an error will be reported statically (if it can be
detected statically) or dynamically (otherwise). Note that it is not always possible to detect this
statically because the $atom block may contain a function call, and the function may contain $wait
or $waitall calls.

7.2.2 Atomic blocks: $atomic

The statements in an atomic block will be executed without other processes interleaving, to the
extent possible. It has the form:

$atomic {
stmtl;
stmt2;

3

It is essentially a weaker form of $atom. Unlike $atom, there are no restrictions on the statements
that can go inside an $atomic block. A process executing an $atomic block will try to execute the
statements without interleaving with other processes, unless it becomes blocked. Unlike an $atom,
the statements in an atomic block do not necessarily execute as a single transition; they may be
spread out over multiple transitions.

When no statement is enabled, the execution of the $atomic block will be interrupted. At this
point, other processes are allowed to execute. Eventually, if the original process becomes enabled
due to the actions of other processes, it may be scheduled again, in which case it regains atomicity
and continues where it left off. For example, after executing the first loop, the process executing
the following code will become blocked at the first $wait or $waitall call:

$atomic {
for (int 1 = 0; 1 < 5; i++) pl[i] = $spawn foo(i);
for (int i1 0; i < 5; i++) $wait plil;

b

Other processes will then execute. Eventually, if the process being waited on terminates, the original
process becomes enabled and may be scheduled, in which case it regain atomicity, increments i and
proceeds to the next $wait or $waitall call. This is in fact a common idiom for spawning and
waiting on a set of processes.

A process that enters an $atomic block is said to be executing atomically; it remains executing
atomically until it reaches the closing curly brace.

Both $atom and $atomic blocks can be nested arbitrarily, but $atom overrides $atomic: a pro-
cess that is executing atomly will continue executing atomly if it encounters an $atomic statement;
but a process executing atomically that encounters an $atom will begin executing atomly.

The atomic semantics are defined more precisely as follows: there is a single global variable
called the atomic lock. This variable can either be null (meaning the atomic lock is “free”), or
it can hold the PID of a process; that process is said to “hold” the atomic lock. Moreover, each
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process contains a special integer variable, its atomic counter, which is initially 0. Every time a
process enters an atomic block, it increments its atomic counter; every time it exits an atomic block,
it decrements its counter. In order to increment its counter from 0 to 1, it must first wait for the
atomic lock to become free, and then take the lock. When it decrements its counter from 1 to 0,
it releases the atomic lock. When a process executing atomically becomes blocked, it releases the
lock (without changing the value of its atomic counter).

7.3 Parallel loops with $parfor

A parallel loop statement has the form
$parfor (int i1, ..., in : dom) S

The syntax is exactly the same as that for the sequential loop $£or(Section[6.3.3)), only with $parfor
replacing $for.

The semantics are as follows: when control reaches the loop, one process in spawned for each
element of the domain. That process has local variables corresponding to the iteration variables,
and those local variables are initialized with the components of the tuple for the element of the
domain that process is assigned. Each process executes the statement S in this context. Finally,
each of these processes is waited on at the end. In particular, there is an effective barrier at the
end of the loop, and all the spawned processes disappear after this point.

7.4 Message-Passing

CIVL-C provides a number of additional primitives that can be used to model message-passing
systems. This part of the language is built in two layers: the lower layer defines an abstract data
type for representing messages; the higher layer defines an abstract data type of communicators for
managing sets of messages being transferred among some set of processes.

7.4.1 Messages: $message

Messages are similar to bundles, but with some additional meta-data. The data component of the
message is the “contents” of the message and is formed and extracted much like a bundle. The
meta-data consists of an integer identifier for the source place of the message, an integer identifier
for the message destination place, and an integer tag which can be used by a process to discriminate
among messages for reception. This is very similar to MPI.

The functions for creating, and extracting information from, messages are given in Section

M0I7T

7.4.2 Communicators: $gcomm and $comm

CIVL-C defines a global communicator type $gcomm and a local communicator type $comm. The
global communicator is an abstraction for a “communication universe” that stores buffered messages
and perhaps other data. The local communicator wraps together a reference to a global communi-
cator and an integer place. Most of the message-passing commands take a local communicator as an
argument to specify the communication universe used for that operation and the place from which
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that operation will be executed. The communication universes are isolated from one another—a
message sent on one can never be received using a different communicator, for example.

The global communicator is the shared object that must be declared in a scope containing all
scopes in which communication in that universe will take place. It is created by specifying the
number of places that will comprise the communicator. A place is an address to which messages
may be sent or where they may be received. There is not necessarily a one-to-one correspondence
between places and processes: many processes can use the same place.

Local communicators are created (typically in some child scope of the scope in which the global
communicator is declared) by specifying the gobal communicator to which the local one will be
associated and the place ID. The local communicator will be used in most of the message-passing
functions; it may be thought of as an ordered pair consisting of a reference to the global communi-
cator and the integer place ID. The place ID must be in [0, size — 1], where size is the size of the
global communicator. The place ID specifies the place in the global communication universe that
will be occupied by the local communicator. The local communicator handle may be used by more
than one process, but all of those processes will be viewed as occupying the same place. Only one
call to $comm_create may occur for each gcomm-place pair.

Both types ($gcomm and $comm) are handle types. When declared with a call to the corresponding
creation function, they create an object in the specified scope and return a handle to that object.
The object can only be accessed through the specified system functions that take this handle as an
argument.

The communicator interface is given in Sections [10.1.7.2] and [10.1.7.3]

Certain restrictions are enforced on some relations between the objects involved in a communi-
cation universe.

Fix a $gcomm object. This object corresponds to a single communication universe with, say,
n places. At any time, there can be at most one $comm object associated to a given place. If a
program attempts to create a $comm object with the same $gcomm and place as an earlier created
$comm object, a runtime error will occur. In particular, there can be at most n $comm objects
associated to the $gcomm.

The relation between processes and $comm objects is unconstrained. One process may use any
number of $comm objects. (Of course, the process must have access to handles for those $comm
objects.) Dually, a single $comm object may be used by any number of processes; this situation
arises naturally when modeling a multi-threaded MPI program.

There is no special status given to the process which creates the $comm object of a given place.
Any process which can access a handle for that $comm object can use it to send or receive messages,
regardless of whether that process was the one that created the $comm object. However, users
should be aware that verification is likely to be most efficient when variables are declared as locally
as possible, so it is best to declare the $comm object in the innermost scope possible. Figure [7.1
illustrates an effective way to do this in the context of modeling a multithreaded MPI program. In
the code skeleton, each thread can access the local communicator object of its process, but not that
of any other process.

7.4.3 Barriers: $gbarrier and $barrier

The CIVL-C header concurrency.cvh defines a global barrier type $gbarrier and a local barrier
type $barrier. They provide an implementation of a barrier for concurrent programs.

The global barrier is a shared object that must be declared in a scope containing all scopes in
which the barrier will be called. It is created by specifying the number of places that will comprise
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$gcomm gcomm = $gcomm_create($here, nprocs);
void Process(int rank) {
$comm comm = $comm_create($here, gcomm, rank);

void Thread(int tid) {
...$comm_enqueue (comm, msg)...
...$comm_dequeue(comm, source, tag)...

}
for (int i=0; i<nthreads; i++) $spawn Thread(i);

$comm_destroy (comm) ;
}

for (int i=0; i<nprocs; i++) $spawn Process(i);

$gcomm_destroy(gcomm) ;

Figure 7.1: Code skeleton for model of multithreaded MPI program showing placement of global
and local communicator objects

the barrier.

Local barriers are created (typically in some child scope of the scope in which the global barrier
is declared) by specifying the gobal barrier to which the local one will be associated and the place
ID. The local barrier will be used in the call to the barrier; it may be thought of as an ordered pair
consisting of a reference to the global barrier and the integer place ID. The place ID must be in
[0,size — 1], where size is the size of the global barrier. Only one call to $barrier_create may
occur for each gbarrier-place pair.

Both types ($gbarrier and $barrier) are handle types. When declared with a call to the
corresponding creation function, they create an object in the specified scope and return a handle
to that object. The object can only be accessed through the specified system functions that take
this handle as an argument. The barrier interface is presented in Section [10.1.5]
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Specification

8.1 Overview

Specification is the means by which one expresses what a program is supposed to do, i.e., what it
means for it to be correct.

There are several specification mechanisms in CIVL-C. First, there are the default properties:
these are generic properties which are checked by default in any program, and require no additional
specification effort. These properties include absence of deadlocks, division by 0, illegal pointer
dereferences, and out of bounds array indexes.

Many more program-specific properties can be specified using assertions. CIVL-C has a rich
assertion language which extends the language of boolean-valued C expressions. Assumptions are
a specification dual to assertions in that they restrict the set of executions on which the assertions
are checked.

Functional equivalence is a power specification mechanism. In this approach, two programs are
provided, one playing the role of the specification, the other the role of the implementation. The
implementation is correct if, for all inputs x, it produces the same output as that produced by
the specification on input x. In other words, the two programs define the same function; this is
sometimes known as input-output equivalence. In order to take this approach, one must first have a
way to specify what the inputs and outputs of a programs are; CIVL-C provides special keywords
for this.

Procedure contracts are another powerful specification mechanisms. These typically involve
specifying preconditions and postconditions for a function. The function is correct if, whenever it is
called in a state satisfying the precondition, when it returns the state will satsify the postcondition.
A program is correct if all its functions satsify their contract.

8.2 Input-output signature

8.2.1 Input type qualifier: $input

The declaration of a variable in the root scope may include the type qualifier $input, e.g.,
$input int n;

This declares the variable to be an input variable, i.e., one which is considered to be an input to the
program. Such a variable is initialized with an arbitrary (unconstrained) value of its type. When
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using symbolic execution to verify a program, such a variable will be assigned a unique symbolic
constant of its type.

In contrast, variables in the root scope which are not input variables will instead be initialized
with the “undefined” value. If an undefined value is used in some way (such as in an argument to
an operator), an error occurs.

In addition, input variables may only be read, never written to.

Alternatively, it is also possible to specify a particular concrete initial value for an input variable.
This is done using a command line argument when verifying or running the program.

An input variable declaration may contain an initializer. The semantics are as follows: if no
command line value is specified for the variable, the initializer is used to initialize the variable. If
a command line value is specified, the command line value is used and the initializer is ignored.

Input (and output) variables also play a key role when determining whether two programs are
functionally equivalent. Two programs are considered functionally equivalent if, whenever they are
given the same inputs (i.e., corresponding $input variables are initialized with the same values)
they will produce the same outputs (i.e., corresponding $output variables will end up with the
same values at termination).

8.2.2 Output type qualifier: $output

A variable in the root scope may be declared with this type qualifier to declare it to be an output
variable. Output variables are “dual” to input variables. They may only be written to, never read.
They are used primarily in functional equivalence checking.

8.3 Assertions and assumptions

8.3.1 Assertions: $assert

The system function $assert (provided by the civlc header) has the signature
void $assert(_Bool expr, ...);

It takes an boolean type expression and a number of optional expressions which are used to
construct an error message. Note that CIVL-C boolean expressions have a richer syntax than C
expressions, and may include universal or existential quantifiers (see below), and the boolean values
$true and $false.

During verification, the assertion is checked. If it cannot be proved that it must hold, a violation
is reported. If additional arguments are present, then a specific message is printed as well if
the assertion is violated. These additional arguments are similar in form to those used in C’s
printf statement: a format string, followed by some number of arguments which are evaluated and
substituted for successive codes in the format string. For example,

$assert (x<=B, "x-coordinate %f exceeds bound %f", x, B);

If x=3 and B=2, then the above assertion will be violated and CIVL would print the error message
“x-coordinate 3 exceeds bound 2”.
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8.3.2 Assume statements: $assume
The system function $assume (provided by the civlc header) has the signature
void $assume(_Bool expr);

During verification, the given expression is assumed to hold. If this leads to a contradiction on
some execution, that execution is simply ignored. It never reports a violation, it only restricts the
set of possible executions that will be explored by the verification algorithm.

Like an assertion call, an assume call can be used any place a statement is expected. In addition,
an assume call can be used in file scope to place restrictions on the global variables of the programs.
For example,

$input int B;
$input int N;
$assume (0<=N && N<=B);

declares N and B to be integer inputs and restricts consideration to inputs satisfying 0 < N < B.

8.4 Formulas

A formula is a boolean expression that can be used in an assert statement, assume statement,
procedure contract (below), or invariant. Any ordinary C boolean expression is a formula. CIVL-C
provides some additional kinds of formulas, described below.

8.4.1 Implication: =>

The binary operation => represents logical implication. The expression p=>q is equivalent to
('p) lla.

8.4.2 Universal quantifier: $forall
The universally quantified formula has the form
$forall { type identifier | restriction} expr

where type is a type name (e.g., int or double), identifier is the name of the bound variable,
restriction is a boolean expression which expresses some restriction on the values that the bound
variable can take, and expr is a formula. The universally quantified formula holds iff for all values
assignable to the bound variable for which the restriction holds, the formula expr holds.

A variation on the construct above can be used in the special case where the bound variable is
to range over a finite interval of integers. In this case the quantified formula may be written:

$forall { type identifier=lower .. upper } expr

where lower and upper are integer expressions.

8.4.3 Existential quantifier: $exists

The syntax for existentially quantified expressions is exactly the same as for universally quantified
expressions, with $exists in place of $forall.
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8.5 Contracts

8.5.1 Procedure contracts: $requires and $ensures

The $requires and $ensures primitives are used to encode procedure contracts. There are op-
tional elements that may occur in a procedure declaration or definition, as follows. For a function
prototype:

T £(...)
$requires expr;
$ensures expr;
For a function definition:

T £(...)
$requires expr;
$ensures expr;

{

3

The value $result may be used in post-conditions to refer to the result returned by a procedure.
Status: parsed, but nothing is currently done with this information.

8.5.2 Loop invariants: $invariant
This indicates a loop invariant. Each C loop construct has an optional invariant clause as follows:

while (expr) $invariant (expr) stmt
for (el; e2; e3) $invariant (expr) stmt
do stmt while (expr) $invariant (expr) ;

The invariant encodes the claim that if expr holds upon entering the loop and the loop condition
holds, then it will hold after completion of execution of the loop body. The invariant is used by
certain verification techniques.

Status: parsed, but nothing is currently done with this information.

8.6 Concurrency specification

8.6.1 Remote expressions: e@x

These have the form expr@x and refer to a variable in another process, e.g., procs[i]@x. This
special kind of expression is used in collective expressions, which are used to formulate collective
assertions and invariants.

The expression expr must have $proc type. The variable x must be a statically visible variable
in the context in which it is occurs. When this expression is evaluated, the evaluation context will
be shifted to the process referred to by expr.

Status: not implemented.
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8.6.2 Collective expressions: $collective

. These have the form
$collective(proc_expr, int_expr) expr

This is a collective expression over a set of processes. The expression proc_expr yields a pointer
to the first element of an array of $proc. The expression int_expr gives the length of that array,
i.e., the number of processes. Expression expr is a boolean-valued expression; it may use remote
expressions to refer to variables in the processes specified in the array. Example:

$proc procs([N];

$assert $collective(procs, N) i==procs[(pid+1)%NJei ;

Status: not implemented.
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Pointers and Heaps

CIVL-C supports pointers, using the same operators with the same meanings as C (&, *, pointer
arithmetic). There is also a heap in every scope, and system functions to allocate and deallocate
objects in the specified scope.

9.1 Memory functions: memcpy

The function memcpy is defined in the standard C library string.h and works exactly the same in
CIVL: it copies data from the region pointed to by q to that pointed to by p. The signature is

void memcpy(void *p, void *q, size_t size);

9.2 Heaps, $malloc and $free

As mentioned above, each dynamic scope has an implicit heap on which objects can be allocated
and deallocated dynamically. The CIVL-C header civlc.cvh provides the functions $malloc and
$free for allocating and dealocating memory, repectively, as described in Section [10.1.1.8|
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Libraries

10.1 Standard CIVL-C headers

CIVL-C headers have the suffix .cvh. Here is the list of standard libraries provided by CIVL:
e civlc provides types and functions that are used frequently by CIVL-C programs;

e scope provides utility functions related to dynamic scopes;

e pointer provides utility functions dealing with pointers;

e seq provides utility functions of sequences (realized as incomplete array in CIVL-C);
e concurrency provides concurrency utilities such as the barrier;

e bundle provides bundle types and methods;

e comm provides communicators and methods;

10.1.1 CIVL basics civlc.cvh

The header civlc.cvh declares four types, three macros and several functions. The types declared
are size_t, $proc, $scope and $int_iter. The declared macros are $true, $false and NULL. The
functions provided in this header will be described in the following.

10.1.1.1 The $assert and $assume functions

The $assert and $assume functions have the following signatures

void $assert(_Bool expr, ...);
void $assume(_Bool expr);

Information about them could be found in Section [R.3l

10.1.1.2 The $wait function
The $wait function has signature
void $wait($proc p);

When invoked, this function will not return until the process referenced by p has terminated.
Note that p can be any expression of type $proc, not just a variable.
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10.1.1.3 The $waitall function
The $waitall function has signature
void $waitall($proc *procs, int numProcs);

When invoked, this function will not return until all the numProcs processes referenced by the
memory specified by procs have terminated.

10.1.1.4 The $exit function

This function takes no arguments. It causes the calling process to terminate immediately, regardless
of the state of its call stack:

void $exit(void);

10.1.1.5 The $choose_int function
The function $choose_int has the following signature:
int $choose_int(int n);
This function takes as input a positive integer n and nondeterministicaly returns an integer in the

range [0,n — 1].

10.1.1.6 The $scope_defined function

The function $scope_defined has signature
_Bool $scope_defined($scope s);

It returns true if the dynamic scope specified by s is defined, else it returns false.

10.1.1.7 The $proc_defined function

The function $proc_defined has signature
_Bool $proc_defined($proc p);

It returns $trueif and only if the given object of $proc type is defined.

10.1.1.8 The heap-related functions: $malloc and $free

The memory allocation function $malloc is like C’s malloc, but takes an extra scope argument:
void * $malloc($scope scope, int size);

To allocate an object, one first needs a reference to the dynamic scope to be used.
The function $free is used to deallocate a heap object; it is just like C’s free:

void $free(void *p);

An error is generated if the pointer is not one that was returned by $malloc, or if it was already

freed.
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10.1.2 Scope utilities scope.cvh
The header scope.cvh declares one function: $scope_parent, which has signature
$scope $scope_parent ($scope s);

This function returns the parent dynamic scope of the dynamic scope referenced by s. If s is the
root dynamic scope, it returns the undefined value of type $scope.

10.1.3 Pointer utilities pointer.cvh

The header pointer. cvh declares functions taking pointers as the arguments for different purposes,
including:

function $equals for equality checking;

function $contains for membership testing;

function $translate ptr for pointer translation;

function $copy for copying data through pointers.

10.1.3.1 The $equals function

The $equals function has the signature
_Bool $equals(void *x, void *y);

This function takes two non-null pointers as input. If the two objects that the pointers refer to
have the same value, then the function returns $true. Otherwise, it returns $false.

10.1.3.2 The $contains function

The function $contains has the signature
_Bool $contains(void *ptrl, void *ptr2);

This function takes two non-null pointers as input. If the object that the pointer ptrl points
to contains the object pointed to by ptr2, then the function returns $true. Otherwise, it returns
$false. For example, given

int a[10];
struct foo {int x; double y} f;
struct foo b[10];

// ... initialize a, f and b

Here are the results of several invocations of $contains:

$contains(&a, &al[3]) returns $true, since the array a contains the cell a[3];

$contains(&al[2], &al[3]) returns $false;

$contains(&al[2], &al[2]) returns $true, because the relation is relexive;

$contains (&f, &f.y) returns $true, since the struct £ contains its field f.y;

$contains (&b, &b[2].x) returns $true.
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10.1.3.3 The $translate_ptr function

The function $translate ptr has the signature
void * $translate_ptr(void *ptr, void *obj);

This function translates a pointer into one object (ptr) to a pointer into a different object (obj)
with similar structure.
For example:

typedef struct node{

int x;
int y;
} node;
typedef struct point{
double a;
double b;
double c;
}point;

node nodes[3];

point points[5];

... // initialize nodes and points

double *p = $translate_ptr(&(nodes[2].y), &points);
// after the translation, p = &(points[2].Db);

10.1.3.4 The $copy function
The $copy function has the signature

void $copy(void *ptr, void *value_ptr);

It copies the value pointed to by value_ptr to the memory location specified by ptr. This
function is different from memcpy only in the way that it can take pointers to (incomplete) array as
the argument and copy the whole array to the other.

10.1.4 Sequence utilities seq.cvh

The header seq.cvh provides utility functions dealing with sequences. A sequence is realized as
an incomplete array (i.e., an array with no extent specified) of any type T, which applies for all
functions of seq.cvh. Functions declared in this header include:

function $seq_init for initializing sequences;

function $seq_length for computing the length of a sequence;

function $seq_insert for element insertion to a sequence;

function $seq_remove for element removal of a sequence.
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10.1.4.1 The $seq_init function

The $seq_init function has the signature
void $seq_init(void *seq, int count, void *value);

Given a pointer to a sequence of type T, this function sets that sequence to be an array of
length count in which every element has the same value, specified by the given pointer value. The
parameter seq has the type pointer-to-incomplete-array-of-T, count has any integer type and must
be nonnegative, and value has the type pointer-to-T.

10.1.4.2 The $seq_length function

The $seq_length function has the signature
int $seq_length(void *seq);

This function returns the length of the sequence pointed to by the pointer seq. The contract is that
seq must be a pointer of a sequence of type T, i.e., seq should have the type pointer-to-incomplete-
array-of-T.

10.1.4.3 The $seq_insert function

The $seq_insert function has the signature
void $seq_insert(void *seq, int index, void *values, int count);

Given a pointer to a sequence of type T, this function inserts count elements into the sequence
starting at position index. The subsequence elements of the original sequence are shifted up, and
the final length of the array will be its original length plus count. The values to be inserted are
taken from the region specified by values, which has type pointer-to-T.

It is required that O<=index<=length, where length is the orginal length of the seqence. If
index=length, this function appends the elements to the end of the array. If index=0, this inserts
the elements at the beginning of the sequence. If count=0, this function is a no-op and values will
never be evaluated (hence may be NULL).

10.1.4.4 The $seq_remove function

The $seq_remove function has the signature
void $seq_remove(void *seq, int index, void *values, int count);

This function removes count elements from the sequence of type T pointed to by seq, starting
at position index.

If values is not NULL, the removed elements will be copied to the memory region beginning
with values, which shoud have the type pointer-to-T. It is required that 0<=index<length and
0<=count<=length-index. If count=0, this function is a no-op.
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10.1.5 Concurrency utilities concurrency.cvh

The header concurrency.cvh declares two types,, $gbarrier and $barrier, and several functions
dealing with barriers, including;:

e functions $gbarrier_create and $barrier_create for creating a new global and local bar-
rier, repectively;

e functions $gbarrier_destroy and $barrier_destroy for destroying a global and local bar-
riere, respectively;

e function $barrier_call for a barrier synchronization request.

10.1.5.1 The $gbarrier_create and $barrier_create functions
The $gbarrier_create function has the signature

$gbarrier $gbarrier_create($scope scope, int size);

It creates a new global object of the given size, puts it in the heap of the given dynamic scope,
and returns a handle to the created $gbarrier object.

The $barrier_create function has the signature
$barrier $barrier_create($scope scope, $gbarrier gbarrier, int place);

It creates a local barrier that joins the specified global barrier gbarrier with the id place. The
new local barrier object is stored in the heap of the given dynamic scope , and a handle to that
object is returned.

10.1.5.2 The $gbarrier_destroy and $barrier_destroy functions

The $gbarrier_destroy and $barrier_destroy functions has the signatures

void $gbarrier_destroy($gbarrier barrier);
void $barrier_destroy($barrier barrier);

These functions deallocated the heap memory regions occupied by the specified $gbarrier
or $barrier object. They should be invoked before the corresponding dynamic scope becomes
unreachable. Otherwise, a memory leak error will be reported.

10.1.5.3 The $barrier_call function

The $barrier_call function has the signature
void $barrier_call($barrier barrier);

When this funciton is called, the calling process will be blocked until all other processes associ-
ated with the same global barrier refered to by the given barrier have made the barrier call.
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10.1.6 Bundle type and functions bundle.cvh

The header bundle. cvh defines the type $bundle (see Section [6.1.2)) and several functions dealing
with bundles:

e function $bundle_size for computing the size of a bundle;
e function $bundle_pack for composing a bundle from some given data;
e function $bundle_unpack for extracting the data contained by a given bundle;

e function $bundle_unpack_apply for extacting the data contained by a given bundle and apply
some operation to them.

10.1.6.1 The $bundle_size function

The $bundle_size function has the signature
int $bundle_size($bundle b);

It takes a bundle and returns its size.

10.1.6.2 The $bundle_pack function

The $bundle_pack function has the signature
$bundle $bundle_pack(void *ptr, int size);

This function creates a bundle from the memory region specified by ptr and size, copying the
data into the new bundle, and returns the new bundle.

10.1.6.3 The $bundle_unpack function

The $bundle_unpack function has the signature
void $bundle_unpack($bundle bundle, void *ptr);
Opposite to $bundle_pack, this function copies the data from the given bundle into the memory
region specified by ptr.
10.1.6.4 The $bundle_unpack_apply function
The $bundle_unpack_apply function has the signature
void $bundle_unpack_apply($bundle data, void *buf, int size, $operation op);

This function unpacks the bundle and applies the specified operation on the content of the
bundle. For every binary operarion defined in operation, the content of the bundle will be used as
the left operand and buf will be used as the right operand. The result of the operation is stored in
buf once is it is done.
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10.1.7 Communicators comm.cvh

The header comm.cvh declares three types, two macros and a number of functions for communi-
cation. The two maros are $COMM_ANY_SOURCE and $COMM_ANY_TAG. The three types declared are
$message, $gcomm and $comm.

10.1.7.1 Messaging functions

The function $message_size returns the size of a given message and has the signature
int $message_size($message message);

The function $message_source returns the source of a given message and has the signature
int $message_source($message message);

The function $message_dest returns the destination of a given message and has the signature
int $message_dest($message message) ;

The function $message_tag returns the tag of a given message and has the signature
int $message_tag($message message);

The function $message_pack has the signature
$message $message_pack(int source, int dest, int tag, void *data, int size);

This function creates a new message of the specified source, dest and tag, copying data from
the memory region specified data and size, and returns the newly created message object.

The function $message_unpack has the signature
void $message_unpack($message message, void *buf, int size);

This function transfers data from message the memory region specified by buf and size, re-
proting an error if the size of the message exceeds the specified size.

10.1.7.2 $gcomm functions

/* Creates a new global communicator object and returns a handle to it.

* The global communicator will have size communication places. The

* global communicator defines a communication "universe" and encompasses

* message buffers and all other components of the state associated to

* message-passing. The new object will be allocated in the given scope. */
$gcomm $gcomm_create($scope s, int size);

void $gcomm_destroy($gcomm gcomm); // Destroys the gcomm

_Bool $gcomm_defined($gcomm gcomm); // Is the gcomm object defined?
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10.1.7.3 $comm functions

/* Creates a new local communicator object and returns a handle to it.

* The new communicator will be affiliated with the specified global

* communicator. The new object will be allocated in the given scope. */
$comm $comm_create($scope s, $gcomm gcomm, int place);

void $comm_destroy($comm comm); // Destroys the comm
_Bool $comm_defined($comm comm); // Is the comm object defined?

/* Returns the size (number of places) in the global communicator associated
* to the given comm. */
int $comm_size($comm comm) ;

/* Returns the place of the local communicator. This is the same as the
* place argument used to create the local communicator. */
int $comm_place($comm comm) ;

/* Adds the message to the appropriate message queue in the communication
* universe specified by the comm. The source of the message must equal
* the place of the comm. */

void $comm_enqueue($comm comm, $message message) ;

/* Returns true iff a matching message exists in the communication universe

* specified by the comm. A message matches the arguments if the destination
* of the message is the place of the comm, and the sources and tags match. */
_Bool $comm_probe($comm comm, int source, int tag);

/* Finds the first matching message and returns it without modifying

* the communication universe. If no matching message exists, returns a message
* with source, dest, and tag all negative. */

$message $comm_seek($comm comm, int source, int tag);

/* Finds the first matching message, removes it from the communicator,
* and returns the message */
$message $comm_dequeue($comm comm, int source, int tag);

10.2 C libraries

Each of the following libraries is at least partially implemented and can be included in a CIVL-C
program:

® assert

— void assert(_Bool expr);
This is equivalent to an $assert statement without error messages.
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e math

— double sqrt(double x);
— double ceil(double x);
— double exp(double x);

e stdlib

— size_t

— void * malloc(size_t size);
This is equivalent to $malloc($root, size)

— void free(void * ptr);
This is identical to $free(ptr).

e stdbool

— true
This is equivalent to $true.

— false
This is equivalent to $false.

e stddef

— size_t

— NULL
e stdio

— int printf(const char * restrict format, ...);
e string

— size_t
— NULL

— void memcpy(void * restrict dst, const void * restrict src, size_t n);
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Chapter 11

CIVL Model Syntax

11.1 Notation and terminology

Let B = {true, false} (the set of boolean values). Let N = {0, 1,2,...} (the set of natural numbers).
Given a node u in a tree, we let ancestors(u) denote the set of all ancestors of u, including u.
We let descendants(u) denote the set of all descendants of u, including w.
For any set S, let S* denote the set of all finite sequences of elements of S. The length of a
sequence £ € S* is denoted length(€).

11.2 Definition of Context

Definition 11.2.0.1. A CIVL type system is a tuple comprising the following components:

—_

. a set Type (the set of types),

2. a type bool € Type (the boolean type),

3. a type proc € Type (the process-reference type),

4. a set Var (the set of all typed variables),

5. a function vtype: Var — Type (which gives the type of each variable),
6. a set Val (the set of all values),

7. a function which assigns to each ¢ € Type a subset Val; C Val (the set of values of type t) and
which satisfies Valpoo = B and Valyoe = N,

8. a function which assigns to each ¢ € Type a value default; € Val,.

The default value will be used to give an initial value to any variable. It could represent
something like “an undefined value of type t” or a reasonable initial value (0 for integers, etc.),
depending on the language one is modeling.

Definition 11.2.0.2. Given a CIVL type system, a valuation in that system is a function n: Var —
Val with the property that for any v € Var, n(v) € Valuype(v)-

Given a CIVL type system, we let Eval denote the set of all valuations in that system.

o4
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Definition 11.2.0.3. Given a CIVL type system, A CIVL expression system for that type system
is a tuple comprising the following components:

1. a set Expr (the set of all typed expressions over Var),

2. a function etype: Expr — Type (giving the type of each expression),

3. a function eval: Expr x Eval — Val (the evaluation function), satisyfing
e for any e € Expr and 7 € Eval, eval(e, ) € Valeype(e),

4. a function which associates to any V' C Var, a subset Expr(V') C Expr (the set of expressions
which involve only variables in V') satisfying the following:

e for any V C Var and n,n’ € Eval, if n(v) = n/(v) for all v € V, then for any e € Expr(V'),
eval(e,n) = eval(e, )

Definition 11.2.0.4. A CIVL context is a CIVL type system together with a CIVL expression
system for that type system.

11.3 Lexical scopes
Definition 11.3.0.5. Given a CIVL context C, a lexical scope system over C is a tuple
(3, root, sparent, vars)
consisting of
1. aset X (the set of static scopes),

2. a scope root € X (the root scope),
3. a function sparent: X\ {root} — 3 such that
{(sparent(c),0) | 0 € ¥\ {root}}
gives Y the structure of a rooted tree with root root,
4. a function vars: 3 — 2V (specifying the variables declared in each scope) satisfying
e 0 # 7 = vars(o) Nvars(r) = 0.

Definition 11.3.0.6. Given a CIVL context and scope o € ¥, the set of visible variables in o is

Ua’eancestors(a) va rS(OJ) :

One way this notion will be used: expressions used in a scope ¢ can only involve variables visible
in 0.



CHAPTER 11. CIVL MODEL SYNTAX 56
Symbol Section Meaning
B g11.1 {true,false}
N qi1.1  {0,12,...}
ancestors g11.1 set of ancestors of node in a tree (inclusive)
descendants §l11.1 set of descendants of node in a tree (inclusive)
length q11.1 length of a sequence
Var q11.2 the set of all variables
bool §11.2 the boolean type
proc §11.2 the process reference type
Val q11.2 the set of all values
Val, q11.2 values of type ¢
default; q11.2 default value of type t
vtype §11.2 function Var — Type giving type of each variable
Eval §11.2 set of all valuations on Var
Eval(V) q12.1 set of all valuations on variables in V' C Var
Expr q11.2 set of typed expressions over Var
etype q11.2 Expr — Type, gives type of each expression
eval §11.2 Expr x Eval — Val, the evaluation function
C §11.2 a CIVL context
)y q11.3 set of all static scopes
root q11.3 the root scope (member of X3)
sparent q11.3 ¥\ {root} — ¥, parent function in static scope tree
vars q11.3 ¥ — 2Var specifies variables declared in scope
A g11.3 a lexical scope system
void g11.4 type used for function that does not return a value
Type' g11.4]  Type U {void}
F q11.4 set of function symbols
fscope g11.4  F — X\ {root}, gives function scope of each function
returnType  §11.4 F — Type', gives return type of each function
params §11.4 F — Var®, formal parameter sequence for f € F
fo g11.4)  the root function (member of F)
func q11.4 Y, — F, function to which scope belongs
Locy q11.7 set of locations for f € F
Iscope ¢ g11.7 Locy — 3, gives scope of each location for f € F
start §11.7  start location for f € F (member of Locy)
Ty q11.7 set of guarded transitions for f € F

Figure 11.1: Table of Notation Used to Define CIVL Model Syntax
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11.4 Functions

Fix a CIVL context C and lexical scope system
A = (X, root, sparent, vars)

over C.
We introduce a new type symbol void, as in C, to use as the return type for a function that does
not return a value. Let Type’ = Type U {void}.

Definition 11.4.0.7. A function prototype for A is a tuple (o,t,&) consisting of
1. ascope 0 € X\ {root} (the function scope),

2. a type t € Type' (the return type),

3. a finite sequence & = vjvy---v, € vars(o)* consisting of variables declared in the function
scope (the formal parameters).

Definition 11.4.0.8. A CIVL function prototype system consists of
1. aset F (the function symbols),

2. a function which assigns to each f € F a function prototype, denoted

(fscope(f), returnType(f), params(f)),

and satisfying
e for any o € 3, there is at most one f € F such that o = fscope(f), and

3. a root function fy with fscope(fy) = root and which is the only function with root scope.

Definition 11.4.0.9. Given a CIVL function prototype system, and function symbol f € F\{fo},
the declaration scope of f is the scope o = sparent(fscope(f)). We also write f is declared in o.

Note the root function fy has no declaration scope.
Just as every scope has a set of visible variables, there is also a set of visible functions:

Definition 11.4.0.10. The functions wvisible at scope o are those declared in ¢ or an ancestor of o.

We will see that the variables and functions visible at o are the only variables and functions
that can be referred to by statements and expressions used within o.

Note that only certain scopes are function scopes. There can be additional scopes (intuitively
corresponding to block scopes in a source program). Every scope, however, must “belong to” exactly
one function. The precise definition is as follows:

Definition 11.4.0.11. Given a CIVL function prototype system, define

func: X — F
by
f if 0 = fscope(f) for some f € F
func(o) = :
func(sparent(c)) otherwise.

We say o belongs to f when func(o) = f.

Note that the recursion in Definition [11.4.0.11] must stop as the root scope belongs to the root
function and the scopes form a tree.
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11.5 Statements

Fix a CIVL function prototype system. A CIVL statement is defined to be a tuple of one of the
forms described below. In each case, we give any restritions on the components of the tuple and a
brief intuition on the statement’s semantics. The precise semantics will be described in §12]

1. (parassign, Vi, Va,9)

o Vi, V5 C Var
e : Vo — Expr(V}) satisfying etype(i(v)) = vtype(v) for all v € V;

e meaning: parallel assignment, i.e., the assignment of new values to any or all of the
variables in V5. For each variable in V5 an expression is given which will be evaluated in
the old state to compute the new value for that variable. V; contains all the variables
that may be used in those expressions. Hence V; is the “read set” and V5 is the “write
set” for the parallel assignment.

2. (assign,v,e)

e v € Var, e € Expr, etype(e) = vtype(v)
e meaning: simple assignment: evaluate an expression e and assign result to variable v. It

is a special case of parassign but is provided for convenience.

3. (call,y, f,e1,...,€en)
e ycVar, feF, e,...,e, € Expr
e n = numParams(f)
o etype(e;) = vtype(v;), where params(f) = vy -+ - v,
e returnType(f) = vtype(y)

e meaning: evaluate expressions ey, ..., e,; push frame on call stack and move control to
guarded transition system (see §11.7)) for function f; when f returns, pop stack and store
returned result in y

4. (call, f,eq,...,en)

o feF e,...,e, €Expr
e n = numParams(f)
e etype(e;) = vtype(v;), where params(f) = vy - - v,

e meaning: like above, but return type may be void or returned value could just be ignored

5. (fork,p, f,e1,...,€n)

e pcVar, feF, e,...,e, € Expr

e n = numParams(f)

etype(e;) = vtype(v;), where params(f) = vy --- v,

returnType(f) = void

vtype(p) = proc
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e meaning: evaluate expressions ey, ..., e,; create new process and invoke function f in it;
return, immediately, a reference to the new process and store that reference in p

6. (join,e)

e e € Expr
e etype(e) = proc

e meaning: evaluate e and wait for the referenced process to terminate
7. (return,e)

e e € Expr

e meaning: evaluate e, pop the call stack and return control, along with the value, to caller
8. (return)

e meaning: pop the call stack and return control to caller; only to be used in functions
returning void

©w

(write,e)

e e € Expr

e meaning: evaluate e and send result to output
10. (noop)

e meaning: does nothing
11. (assert,e)

e ¢ € Expr, vtype(e) = bool

e meaning: evaluate e; if result is false, stop execution and report error
12. (assume,e)

e ¢ € Expr, vtype(e) = bool

e meaning: assume e holds (i.e., if e does not hold, the execution sequence is not a real
execution)

11.6 Remarks

The system described is sufficiently general to model pointers. There can be (one or more) pointer
types and corresponding values. The parallel assignment statement can be used to model statements
like C’s *p=e;. In the worst case (if no information is known about where p could point), one can
let V5 = Var. Similarly, expressions that involve *p as a right-hand side subexpression can always
take V] = Var.

Heaps can also be modeled. A heap type may be defined and a variable of that type declared.
Expressions to modify and read from the heap can be defined, as can pointers into the heap.
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11.7 Transition system representation of functions

Definition 11.7.0.12. Given a CIVL function prototype system and f € F, a guarded transition
system for f is a tuple (Loc, Iscope, start, T'), where

e Loc is a set (the set of locations),

e Iscope: Loc — ¥ is a function which associates to each [ € Loc a scope Iscope(l) € 3 belonging

to f,

e start € Loc (the start location),
e T is a set of guarded transitions, each of which has the form (I, g, s,"), where

— 1,I' € Loc (the source and target locations)

— g € Expr(V), where V' is the set of variables visible at Iscope(l), and etype(g) = bool (g
is called the guard),

— s is a statment all of whose constituent variables, expressions, and function symbols are
visible at Iscope(l).

Furthermore, if the guarded transition system contains a statement of the form (return) then
returnType(f) = void. If it contains a statement of the form (return,e) then

etype(e) = returnType(f).

Definition 11.7.0.13. Given a CIVL prototype system, a CIVL model M for that system assigns,
to each f € F, a guarded transition system

(Locy, Iscopey, starty, Ty)

for f. Moreover, if f # f’ then Loc; N Locy = 0.
Definition 11.7.0.14. Given a CIVL model M, let Loc = ;> Locy.
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CIVL Model Semantics

12.1 State

Fix a CIVL model M. Recall that a valuation is a type-respecting function from Var to Val. Given
a subset V' C Var of variables, we define a valuation on V' to be a type-respecting function from V'
to Val. Let Eval(V') denote the set of all valuations on V. Note that Eval(Var) = Eval.

Definition 12.1.0.15. A state of a CIVL model M is a tuple
s = (A, droot, dparent, static, deval, P, stack),
where
1. A is a finite set (the set of dynamic scopes in s),
2. droot € A (the root dynamic scope),
3. dparent: A\ {droot} — A is a function such that the set
{(dparent(4),6) | 6 € A\ {droot}}
gives A the structure of a rooted tree with root droot,
4. static: A — X,
5. static(droot) = root and droot is the only 6 € A satisfying static(d) = root,
6. static(dparent(d)) = sparent(static(d)) for any § € A,
7. deval is a function that assigns to each 0 € A a valuation deval(d) € Eval(vars(static(d))),
8. P (the set of process IDs in s) is a finite subset of Valyoc, and
9. stack: P — Frame™, where

Frame = {(0,1) € A X Loc | Iscope(l) = static(d)}.

Let State denote the set of all states of M.

Remarks:

61
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1. We will also refer to dynamic scopes as dyscopes.

2. The elements of A contain no intrinsic information. Instead, all of the information concerning
dyscopes is encoded in the functions that take elements of A as arguments. Hence we might
just as well call the elements of A “dynamic scope IDs” (just as we call the elements of
P “process IDs”). Omne could use natural numbers for the dyscopes, just as one does for
processes.

3. The reason for using some form of ID for dyscopes and processes, rather than just incorporat-
ing the data in the appropriate part of the state, is that both kinds of objects may be shared.
There can be several components of the state that refer to the same dyscope d: e.g., d could
have several children, each of which has a parent reference to d, as well as a reference from a
frame. A process can be referred to by any number of variables of type proc.

4. If o = static(d), we say that ¢ is an instance of o or o is the static scope associated to 0. In
general, a static scope can have any number (including 0) of dynamic instances. The exception
is the root scope root, which must have exactly one instance (droot).

5. A valuation deval(d) assigns a value to each variable in the static scope associated to ¢. The
function deval thereby encodes the value of all variables “in scope” in state s.

6. The sequence stack(p) encodes the state of the call stack of process p. The elements of the
sequence are called activation frames. The first frame in the sequence, i.e., the frame in
position 0, is the bottom of the stack; the last frame is the top of the stack.

7. Each frame refers to a dyscope 6 and a location in the static scope associated to 9.

Definition 12.1.0.16. A dyscope 0 € A is a function node if static(d) is the function scope of some
function.

Definition 12.1.0.17. Given any § € A, fnode(d) € A is defined as follows: if § is a function node,
then fnode(d) = 4, else fnode(d) = fnode(dparent(d)). We call fnode(d) the function node associated
to 9.

The relation {(8,d") | fnode(d) = fnode(d’)} is an equivalence relation ~ on A. Let A = A/ ~
and write [0] for the equivalence class containing 4.
The set of activation frames in a state s may be identified with the set

AF(s) = | J{p} x {0, ... length(stack(p)) — 1}

pEP

Namely, (p,i) corresponds to the i*" entry in the call stack stack(p) (where the elements of the
stacks are indexed from 0).

Define W: AF(s) — A as follows: given (p, 1), let (6,1) be the corresponding frame; set W(p, 1) =
[9]-

12.2 Jump protocol

When control moves from one location to another within a function’s transition system, dyscopes
may be added, because you can jump out of scope nests and into new scope nests. The motivating
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1 procedure jump(s: State, p: Valyoc, I': Loc): State is
2 | let (A, droot, dparent, static, deval, P, stack) = s;
3 | let 0 be the dyscope of the last frame on stack(p);
4 | let o = static(0);
5 | let o’ = Iscope(l’);
6 | let oy be the least upper bound of ¢ and ¢’ in the tree X;
7 | let m be the minimum integer such that sparent™ (o) = oyup;
8 | let dup = dparent™(6);
9 | let » be the minimum integer such that sparent”(c’) = oyyp;
10 | let dg,...,0,_1 be n distinct objects not in A;
11 let A/:AU{(SO,...,énfl};
12 | define dparent’: A"\ {droot} — A’ by
dparent(¢d’) if &' € A
dparent’(&') = < 61 if ' = ¢; for some 0 < i <n—1;
Olub ifn>1and ¢ =08,
static(d’) if & € A ‘
sparent’(¢’) if &' = &; for some 0 < i <n’
) deval(d')(v) ifdeA

] defau It, otherwise’

13 | define static’: A’ — ¥ by static'(§') = {

14 | for &' € A’ and v € vars(static(d')), let deval’(6")(v)

15 | define stack’ to be the same as stack except that the last frame on stack’(p) is replaced with
(09,0") if n > 1, or with (dup, ") if n = 0;

16 | let s’ = (A, droot, dparent’, static’, deval’, P, stack’);

17 | return the result of removing all unreachable dyscopes from s;

Figure 12.1: Jump protocol: how the state changes when control moves to a new location within a
function. The procedure may only be called if func(o) = func(o’), i.e., the jump is contained within
one function.

idea is that you have to move up the dyscope tree every time you move past a right curly brace
(i.e., leave a scope) and then push on a new scope for each left curly brace you move past. So there
is a sequence of upward moves followed by a sequence of pushes to get to the new location. (And
either or both sequences could be empty.) At the end, if any dyscopes become unreachable, they
are removed from the state.

Note however, that we do not assume that scopes are associated to locations in a nice lexical
pattern (or any pattern at all). The protocol described here works for any arbitrary assignment of
scopes to locations.

The precise protocol is described in Figure [12.1} The algorithm shown there takes as input a
well-formed state, a process ID, and a location I’ for the function that p is currently in. Say the
current dyscope for p is §, and !’ is in static scope ¢’. Let o = static(d). Hence the current static
scope is o and the new static scope will be ¢’.

First, you have to find the least upper bound oy, of o and ¢’ in the static scope tree. (Hence
owp 18 @ common anecestor of o and ¢/, and if ¢” is any common ancestor of ¢ and ¢’ then ¢” is an
ancestor or equal to o,,.) Note that the least upper bound must exist since the function scope is a
common ancestor of o and ¢’. There is a chain of static scopes from o up to oy, and a corresponding
chain 6, dparent(d),...,dparent™(d) in the dynamic scope tree. Let d,,, = dparent™(§). This will
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become the least upper bound of § and the new dynamic scope corresponding to ¢’ that will be
added to the state.

Next you add new dyscopes corresponding to the chain of static scopes leading from oy, down
to ¢’. The variables in the new scopes are assigned the default values for their respective types.
The dparent, static, and deval maps are adjusted accordingly. Finally, the stack is modified by
replacing the last activation frame with a frame referring to the (possibly) new dynamic scope and
new location /’.

This protocol is executed every time control moves from one location to another.

Note that in CIVL all jumps stay within a function. There is no way to jump from one function
to another (without returning).

A small variation is the protocol for moving to the start location of a function when the function
is first pushed on the stack. Since the start location is not necessarily in the function scope (it may
be a proper descendant of that scope), you have to execute the second half of the protocol to push
a sequence of scopes from the function scope to the scope of the start location.

12.3 Initial State

The initial state for M is obtained by creating one process (let P = {0}) and having it call the root
function fy. Hence start with the state s in which P = {0}, .... The initial state is jump(s, 0, starty, ).

12.4 Transitions

The transitions follow the usual “interleaving” semantics. Given a state o, one defines the set of
enabled transitions in o as follows. Let p € P. Look at the last frame (d, () of stack(p) (i.e., the top
of the call stack), assuming the stack is nonempty. Look at all guarded transitions emanating from
l. For each such transition, evaluate the guard using the valuation formed by taking the union of the
valuations of all ancestors of d (including d). In other words, follow the standard “lexical scoping”
protocol to determine the value of any variable that could occur at this point. Those transitions
whose guard evaluates to true are enabled.

For each enabled transition, a new state is generated by executing the transition’s statement.
For the most part, the semantics are obvious, but there are a few details that are a bit subtle.

12.5 Calls and Spawns

Both calls and forks of a function f entail the creation of a new frame. First, a new dyscope d
corresponding to fscope(f) is created. To find out where to stick that new scope in the dynamic
scope tree, proceed as follows: begin in the dyscope for the process invoking the fork or call and
start moving up its parent sequence until you reach the first dyscope d’ whose associated static scope
is the defining scope of f. (You must reach such a scope, or else f would not be visible, and the
model would have a syntax error!) Insert d right under d', i.e., dparent(d) = d’. This preserves the
required correspondence between static scopes and dyscopes. Now you move to the start location,
using the jump protocol, which may involve the creation of additional dyscopes under d. The new
frame references the last dynamic scope you created, and the location is the start location of f.
Variables are given their initial values in all the newly created dyscopes (however that is done).
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All of that is the same whether the statement is a fork or call. The only difference is what
happens next: for a call, the new frame is pushed onto the calling process’ call stack. For a fork, a
new process is “created”, i.e., you pick a natural number not in P and add it to P, and push the
frame onto the new stack. To be totally deterministic, you could pick the least natural number not
in P.

12.6 (Garbage collection

In a state s, a dyscope is unreachable if there is no path from a frame in a call stack to that dyscope
(following the dparent edges). You can remove all unreachable dyscopes.

If a process has terminated (has empty stack) and there are no references to that process in the
state, you can just remove the process from the state.

In any state, you can renumber the processes (and update the references accordingly) however
you want, to get rid of gaps, put them in a canonic order, etc.
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Chapter 13

Tool Overview

13.1 Symbolic execution

The tools currently in the CIVL tool kit all use symbolic execution. This is a technique in which
variables are assigned symbolic rather than concrete values. In particular, input variables are
assigned unique symbolic constants, which are symbols such as X, Y, and so on. Operations
produce symbolic expressions in those symbols, such as (X + Y)/2.

13.2 Commands

Current tools allow one to run a CIVL program using random choice to resolve nondeterministic
choices; verify a program using model checking to explore all states of the program; and replay a
trace if an error is found. There are also commands to show the results just of preprocessing or
parsing a file; as these are basically sub-tasks of the other tasks, they are used mainly for debugging.

Each tool is launched from the command line by typing “civl c¢md ...”, where cmd is one of

e help : print usage information

e run : run the program using random simulation

e verify : verify program

e replay : replay trace for program

e parse : show result of preprocessing and parsing file
e preprocess : show result of preprocessing file only.

The additional arguments and options are described below and are also shown by the help command.
A number of properties are checked when running or verifying a CIVL program. These include
the following:

e absence of deadlocks
e absence of assertion violations

e absence of division or modulus with denominator 0
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e absence of illegal pointer dereferences
e absence of out-of-bounds array indexes
e absence of invalid casts

e every object is defined (i.e., initialized) before it is used.

13.3 Options

The following command line options are available:
-debug or -debug=boolean (default: false)

debug mode: print very detailed information

-echo or —echo=boolean (default: false)
print the command line

-enablePrintf or —enablePrintf=boolean (default: true)
enable printf function

-errorBound=integer (default: 1)
stop after finding this many errors

-guided or -guided=boolean (default: false)
user guided simulation; applies only to run, ignored for all other commands

-id=integer (default: 0)
ID number of trace to replay

—-inputkey=value
initialize input variable key to value

-maxdepth=integer (default: 2147483647)
bound on search depth

-min or -min=boolean (default: false)
search for minimal counterexample

-por=string (default: std)
partial order reduction (por) choices: std (standard por) or scp (scoped por)

-random or -random=boolean (default: varies)
select enabled transitions randomly; default for run, ignored for all other commands

-saveStates or -saveStates=boolean (default: true)
save states during depth-first search

-seed=string (default: none)
set the random seed; applies only to run

-showAmpleSet or -showAmpleSet=boolean (default: false)
print the ample set of each state

68



CHAPTER 13. TOOL OVERVIEW 69

-showModel or -showModel=boolean (default: false)
print the model

-showProverQueries or -showProverQueries=boolean (default: false)
print theorem prover queries only

-showQueries or —showQueries=boolean (default: false)
print all queries

-showSavedStates or —~showSavedStates=boolean (default: false)
print saved states only

-showStates or -showStates=boolean (default: false)
print all states

-showTransitions or ~showTransitions=boolean (default: false)
print transitions

-simplify or -simplify=boolean (default: true)
simplify states?

-solve or —solve=boolean (default: false)
try to solve for concrete counterexample

-sysIncludePath=string (default: )
set the system include path

-trace=string (default: )
filename of trace to replay

-userIncludePath=string (default: )
set the user include path

-verbose or -verbose=boolean (default: false)
verbose mode

13.4 Errors

When a property violation occurs, either in verification or run mode, a brief report is written to
the screen. In addition, a report may be logged in the directory CIVLREP.

The error bound parameter determines how many errors can be encountered before a search
terminates. By default, the error bound is 1, meaning a search will stop as soon as the first error
is found. The error bound can be set to a higher number on the command line using option
errorBound.

When the error bound is greater than one, the CIVL verifier continues searching after the first
error is discovered. It first attempts to “recover” from the error by adding to the path condition a
clause which guarantees that the error cannot happen. For example, if the error was caused by a
possible division by zero, x/y, where y is an unconstrained real symbolic constant, CIVL will add
to the path condition the predicate y # 0, and continue the search. In some cases, CIVL determines
that the modified path condition is unsatisfiable, in which case the search will back-track in the
usual symbolic execution way.
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In addition to the printed reports, errors are logged. However, CIVL follows a protocol aimed
at limiting the number of reports of errors which are essentially the same. This protocol uses a
simple equivalence relation on the set of errors. Two erroneous states are considered equivalent if
the errors are of the same kind (deadlock, division by zero, illegal pointer dereference, etc.) and
every process is at the same location in both states. When an error is encountered, CIVL first
checks to see if an earlier equivalent errors exists in the log. If so, the lengths of the traces leading
to the two error states are compared. If the new trace is shorter, the old log entry is replaced with
the new one. In this way, only the shortest representative error trace for each equivalence class of
errors is recorded in the log.

A log entry actually entails two things: first, a plain text entry similar to the one printed to the
screen is made in a log file in CIVLREP. The name of this file is usually of the form root _log.txt,
where root is the root of the original file name, i.e., the substring of the file name that ends just
before the first ‘.”. For example, if the file name is diningBad.cvl, the log file will be named
diningBad_log.txt. This is a plain text, human-readable file which summarizes the results of the
verification run.

In addition, each saved trace is stored in a separate file in CIVLREP. The names of these files
have the form root _id.trace, where id is the error ID (reported when the error is printed and
logged). This file is not intended to be human-readable. It contains a compressed representation of
the trace, including all of the options and parameter values and choices made a nondeterministic
points. This file is used by CIVL when replaying an error trace.

As mentioned above, the CIVL replay command is used to play an earlier-saved error trace.
When more than one trace has been saved, the -id command line option can be used to specify
which one to play. (The default id is 0).
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Interpreting the Output

14.1 Transitions

Transitions are printed during trace replay, in the course of a run, or during verification if option
showTransitions is selected. A typical transition is printed as follows:

State 6, proc O:
44->49: LOOP_FALSE_BRANCH at f0:36.18-23 "i < n";
49->RET: return (init) at £f0:37.0-1 "}";
7->8: 1 = 0 at £0:42.7-16 "int i = 0";

--> State 74

This means that the transition begins executing from the state with ID 6, and it is executed by
the process with PID 0. The transition is executed in a sequence of atomic steps; in this case there
the transition consists of three steps.

Process 0 begins at location 44; this is a static location in the program graph of a function in the
CIVL model. Details about the locations can be seen by printing the CIVL model. In executing the
first step, control moves from location 44 to location 49. This first step is an edge in the program
graph corresonding to the false branch of a loop condition, i.e., the branch that exits the loop.

The remainder of the line describing the step specifies the part of the original source code
corresponding to this step. The source code fragment can be found in file £0. To save space and
avoid constantly repeating long paths, all the source files involved in a program are printed once
and assigned keys such as £0, £1, etc. The legend is printed out once at the beginning of the run;
in this case it is simply the following:

File name list:
f0 : dining.cvl

The source code fragment begins on character 18 of line 36 of £0, and extends to character 23 of
that line. This range is inclusive on the left and exclusive on the right, so the total number of
characters in this range is 23 — 18 = 5. The five characters from the source code are printed next
inside double quotes. For longer ranges, this excerpt will be abbreviated using an elipsis.

The second step executes a return statement, which results in popping the top activation frame
from process 0’s call stack. The function returning is init. Since the program counter for that
frame disappears with the execution of this step, there is no final value for its new location; this is
signified using the pseudo-location RET.
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State 7
Path condition
| 0 <= SIZEOF(dynamicType<146>)+-1
Dynamic scopes
dyscope dO (id=0, parent=d0, static=0)
| reachers = {0}

| variables
| | __atomic_lock_var = process<-1>
| | __heap = NULL

| reachers = {0}
| variables
| | __heap = $heap<(A[1][])<H_pOs1v0i010[0:=A<(H_p0Os1v0i010[0].0) [0:=1, 1:=2, 2:=3],2>]>>
| | a = &heapObject<dl,0,0>[0]
| | b = &heapObject<d1,0,0>[0].a[2]
Process states
| process pO (id=0)
| | atomicCount=0
| | call stack
| | | Frame[function=_CIVL_system, location=14, £f0:25.2-9 "$assert", dyscope=dil]

|
|
|
(!

[

(!

|1

(!

| | dyscope d1 (id=1, parent=d0, static=4)
(.

(.

(!

|1

(.

|

|

|

|

|

Figure 14.1: Complete print-out of a state

In the new top frame, control is at location 7, and an assignment statement is executed, moving
control to location 8. With this last step, the transition ends at State 74.

Between transitions, processes can be renumbered. Hence a process with PID 0 in one state,
may have a different PID in another state. The same is true for dynamic scope IDs. Within a single
transition, however, these numbers will not change.

14.2 States

States are printed typically when a property is violated, at the initial or final points of a trace
replay, or if the option showStates, showSavedStates, verbose, or debug is selected.

A complete print-out of a state can be seen in Figure The state is presented in hierarchical
way. At the top-most level of this hierarchy, there are 3 main parts to the state:

1. the path condition, i.e., the boolean-valued symbolic expression used in symbolic execution to
keep track of all conditions on the input symbols which must hold in order for the current
path to have been followed;

2. the dynamic scopes, and
3. the process states.

The dynamic scopes are numbered starting from 0. This numbering is arbitrary and is invisible
to the program, i.e., there is no way for the program to obtain its dynamic scope ID. This allows
the verifier to renumber dynamic scopes at will in order to transform a state into an equivalence
canonical form.
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The print-out of each dynamic scope specifies the ID of the dyscope’s parent in the dyscope
tree. (The root dyscope shows —1 for the parent.) This specifies the complete tree structure of the
dyscopes. Each dyscope is an instance of some static scope; the representation also shows the ID
of this static scope.

The next line in the representation of the dyscope shows a set of reachers. These are the PIDs
of the processes that can reach this dyscope. A process can reach a dyscope if there is path in the
dyscope tree that starts from a dyscope referenced by a frame on the process’ call stack and follows
the parent edges in the tree.

The variables section of the dyscope representation consists of one line for each variable in the
static scope corresponding to the dyscope. There are also special hidden variables, such as the
heap. In each case, the value assigned to the variable is shown. A value of NULL indicates that the
variable is currently undefined. The format for the value of a pointer depends on the type of object
being referenced, as follows:

e A variable: &variable <dyscope name>

e An element of an array: &array <dyscope name> [index]

e A struct field: &wvariable <dyscope name>. field

e A heap cell: variable <dyscope name, malloc ID , malloc call number>

The process states section consists of one sub-section for each process currently in the state.
Like the dynamic scopes, the processes are numbered in some arbitrary way. For each process,
the value of the atomic count is given. This is the nesting depth of the atomic blocks in which
the process is currently located, i.e., the number of times the process has entered an atomic block
without exiting the block.

The call stack of the process lists the activation frames on the stack from top to bottom. The
frame at the top correspond to the function currently executing in that process. The name of the
function, the value of the program counter (location), and the source code for that location, and
the dyscope ID for the frame are shown.

14.3 Property Violations

As described in Section [13.4] an error report is printed whenever CIVL encounters an error. A
typical error report appears as follows:

Error O encountered at depth 21:

CIVL execution error (kind: DEADLOCK, certainty: PROVEABLE)

A deadlock is possible:
Path condition: true
Enabling predicate: false

ProcessState 0: terminated

ProcessState 1: at location 25, £0:21.30-42 "forks[right]"
Enabling predicate: false

ProcessState 2: at location 25, £0:21.30-42 "forks[right]"
Enabling predicate: false

at £0:21.30-42 "forks[right]".
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The report begins with “Error 0”. The errors are numbered in the order they are discovered
in this search; this indicates that this is the first (Oth) error encountered. The depth refers to
the length of the depth-first search stack when the error was encountered. In this case, the depth
was 21, meaning that the trace leading to the erroneous state is a sequence of 21 states and 20
transitions.

The errors are categorized by kind. The error kinds include deadlock, indicating that it is possible
no transition is enabled in the state; assertion violation, indicating an assertion may fail in the state;
division by zero; and out of bounds, indicating an array index may be out of bounds, among many
more.

In addition to the brief report shown above, most error reports also include a complete print-out
of the state at which the error occurred. They will also include additional information specific
to the kind of error. For example, the deadlock error report shown above includes the following
information:

e the value of the path condition;

e the enabling predicate, which is the disjunction of the guards associated to all transitions
departing from the current state. This is the predicate that CIVL has found to possibly be
unsatisfiable under the context of the path condition; and

e for each process, the current location of the process and the enabling predicate for that process,
i.e., the disjunction of the guards associated to all transitions departing from the current state
in that process (CIVL has found that all of these may be unsatisfiable).

Errors are also categorized as to their certainty. CIVL is conservative, meaning that if it not
sure a property holds in a state, it will report it. This means that it may sometimes raise false
alarms, i.e., report a possible error even when none exists. The certainty measures how certain
CIVL is that the error is real. The certainty levels, from most to least certain, are as follows:

1. concrete: this indicates that CIVL has actually found concrete values for all input variables
that are guaranteed to drive the execution along the current trace and result in the error;

2. proveable: this indicates that a theorem prover (either the external one or CIVL’s built-
in prover) has determined that the error is feasible, which includes proving that the path
condition is satisfiable; however, it has not necessarily found concrete values for the inputs;

3. maybe: this indicates the prover is not sure whether this is an error; this could be due to the
incompleteness of the decision procecure, or it could be a real error;

4. none: probably an internal CIVL error: the theorem prover has not said anything.

14.4 Statistics

e validCalls: the number of calls to the CIVL wvalid method, used to determine if a first-order
formula is valid under a given first-order context. Some of these queries are resolved quickly by
CIVL; when CIVL cannot resolve the query itself, it calls a separate theorem prover (CVC3)

e proverCalls: the number of calls to the separate theorem prover’s valid method

e memory: the total amount of memory, in bytes, consumed by the Java virtual machine at the
end of the search/run.
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time: the total time, in seconds, used to perform the CIVL operation
mazxProcs: the maximum process count achieved, over all states encountered in the search /run

statesInstantiated: the number of state objects instantiated during the course of the verifica-
tion/run

statesSaved: the number of states saved in the course of a search

statesSeen: the number of states pushed onto the depth-first search stack in the course of the
search; note that “intermediate states” created in the process of executing a transition are
not pushed onto the stack, only the final state resulting from the transition is pushed

statesMatched: the number of times a state encountered in the depth-first search was found
to match a saved state seen earlier in the search

steps: the total number of primitive steps executed during the verification/run. A step is the
smallest, atomic, unit of execution; each transition is composed of one or more steps. This
number is a good measure for the total amount of “work” carried out by CIVL

transitions: the total number of transitions executed during the verification/run. A transition
is a coarser unit of execution; each transition consists of one or more steps executed from a
single process, resulting in a state which is then pushed onto the DFS stack.
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Emacs mode

A CIVL-C mode for the emacs text editor is available in directory emacs in the CIVL distribution.
This provides syntax highlighting and automatic indentation for CIVL-C programs.
To install this mode:

1. Copy file civl-syntax.el to "/.emacs.d/lisp or another favorite location

2. Include that path in your load path in .emacs:
(add-to-list ’load-path "~/.emacs.d/lisp")
3. Add the following lines to your ~/.emacs file:

(require ’civl-syntax)
(civl-syntax)

We are grateful to William Killian of the University of Delaware for writing this emacs module.
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